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ABSTRACT

Recent improvements in mass spectrometry (MS) technology

led to an explosive amount of MS data collected and shared.

A typical liquid chromatography/mass spectrometry (LC/MS)

“image” from the instrument used in this study consists of

4GB of data. To reduce the bit rate required to code the MS

data below that of the authors’ previous (lossless) algorithm,

we introduce a technique for near-lossless compression. It

guarantees that each decompressed sample differs from its

original value by no more than a user-specified quantity de-

fined as the target Maximum Absolute Distortion (MAD). We

evaluate the proposed method by introducing feature-based

metrics applied to the decompressed MS data and show that

the MAD-based compression outperforms a traditional cod-

ing algorithm aimed at minimizing the mean squared error.

Index Terms— spectroscopy, distortion, image coding,

data compression

1. INTRODUCTION

Research into the protein composition of biological samples

is a critical endeavor in the life sciences, and its progress

has been accelerated by the capability to simultaneously esti-

mate peptide sequences and abundances via mass spectrom-

etry (MS) for hundreds of proteins in a given sample [1].

Scientists need to share and aggregate this information, how-

ever the large files make storage, processing, visualization,

and transmission very challenging. A data set produced by a

typical proteomics experiment may consist of 500GB, which

would require 1.4 days to transfer using a T3 line (at 43Mbps),

38 days using a T1 line (at 1.54Mbps), or 75 days using a DSL

or cable connection (768kbps). Our previously reported loss-

less compression ratio of 25:1 [2] would allow a T1 line to
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deliver the data over a weekend rather than 6 weeks, which

illustrates the enabling role of data compression in biological

research.

In the research reported here, we investigated and devel-

oped a method for near-lossless compression of MS data. In

near-lossless compression, every sample value in a recon-

structed data is guaranteed to differ from the corresponding

value in the original data by no more than a user-specified

amount.

In Section 2, we review related background material. In

Section 3 we introduce our algorithm for near-lossless cod-

ing of mass spectra. The results are presented in Section 4.

Finally, we conclude in Section 5.

2. BACKGROUND

2.1. Proteomics

Although the Human Genome Project and the refinement of

DNA microarrays have led to a recent growth in genomic-

based research, it is proteomics that is ultimately expected to

have a far greater impact on science and medicine [3]. The

proteome contains important information that is not contained

in gene sequences or mRNA abundances [1].

Proteins must be processed prior to analysis by MS. They

are typically chemically digested into lower-mass peptides

and stratified by biophysical properties in a high performance

liquid chromatography (HPLC) system. The mass analysis

process involves ionizing the sample, separating the ions via

the mass-to-charge ratio (m/z), and measuring the result [4].

Storage and communication of minimally-processed

LC/MS data is necessary so that scientists who wish to com-

pare results (or re-analyze older data with updated tools or

protein databases) may access and pass multiple data sets

through a common analysis pipeline [5]. This is infeasible

for the heavily reduced results files that are currently small

enough to store and transmit. Lossless compression tools are

emerging to address this need [6, 7, 2] with reported perfor-

mance of up to 25 : 1
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2.2. Data Characteristics

LC/MS data consists of a series of one-dimensional inten-

sity measurements (“scans”) over a discrete set of mass-to-

charge ratio (m/z) values. We will use an electrospray ioniza-

tion time-of-flight (ESI-TOF) LC/MS system for illustration.

Consecutive scans contain similar peptides and therefore have

similar spectra, however the spectrum gradually changes over

the range of LC “retention times”. For TOF MS, the m/z sam-

pling rate is not constant, rather, it is a function of m/z (Fig. 1).
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Fig. 1. Example of a region of an LC/MS image. The scale is

from black (zero) to white (full scale).

For the TOF instrument, a single scan could contain 200k

data points. However, spectra usually have sparsely populated

regions, and contiguous blocks of zero intensity are not stored

explicitly, making a typical scan 100k points. The spectral

peak lobes extend over approximately 20 samples and are dig-

itized to a resolution of approximately 12 bits. For a complex

biological sample, a single LC/MS run could produce, for ex-

ample, 7000 scans and 4GB of data.

2.3. Mass Spectrometry Data Analysis

The goal of feature detection is to quantify the abundance of

each peptide in a sample via its ion intensities in the mass

spectrum. Peptide information is spread over ions in multi-

ple charge states (e.g., z = 1, 2, 3...), multiple masses (i.e.,

the monoisotope and successively heavier (stable) isotopes),

and multiple retention times (scans). For each charge state

of a peptide, the feature detector finds the m/z ratio of the

monoisotopic peak and infers the charge state based on the

Δm/z between isotopes. Furthermore, it computes an inten-

sity value for each charge state (e.g., the apex or integral (in

one or both dimensions) of the monoisotopic peak, or a sum

over all isotopic peaks). Peaks must be detected in the pres-

ence of measurement variability and background noise (e.g.,

due to other peptides and chemicals eluting from the chro-

matographic column, airborne contaminants, and degradation

(i.e., mass reduction) of peptides in the mass analyzer). A typ-

ical algorithm for feature detection incorporates background

estimation and subtraction, smoothing, individual peak detec-

tion, grouping of multiple co-eluting peaks into a set of iso-

topes of a common peptide and charge state (using knowledge

of the expected isotopic distribution), and optionally combin-

ing estimates of a peptide seen in multiple charge states.

2.4. Near-Lossless Compression

Most standard lossy data compression algorithms mini-

mize the mean squared error (MSE) between the origi-

nal data and its decompressed version. Near-lossless cod-

ing schemes minimize the maximum absolute distortion

(MAD) which is equivalent to the L∞ norm of x − x̂,

where x is the original data and x̂ is its decompressed ver-

sion: MAD(x, x̂) = maxi,j |x(i, j) − x̂(i, j)| . Every recon-

structed sample is guaranteed to differ from its original value

by up to a small and preset amount. The advantage of near-

lossless coding over a standard MSE-based compression is in

maintaining a uniform quality across the whole data set.

Near-lossless coding is used in imaging applications

where strict control of the error is required such as medical

imaging [8]. Methods used to achieve near-lossless compres-

sion include differential pulse code modulation [8], vector

quantization [9], and wavelet transforms [10].

3. NEAR-LOSSLESS COMPRESSION USING
BIT-PLANE CODING

In this section we describe the proposed method for near-

lossless compression of MS data. The first step of the algo-

rithm is universal gridding during which the MS data from all

scans are translated onto the same grid. Then, the intensity

values are encoded using a bit plane arithmetic coder opti-

mized for satisfying the target MAD.

3.1. Universal Gridding

As the first step in the proposed near-lossless compression

algorithm, we translate the MS data onto a universal grid de-

fined as the union of all of the individual grid points in all

scans. The original scan points are then mapped onto the uni-

versal grid. If the original scan does not have an intensity

value for a particular grid point, the intensity is assumed to be

zero. The process of generating a universal grid is shown in

Fig. 2.

3.2. Bit Plane Coding (MAD-BPAC)

We use a near-lossless coder introduced in [11] that per-

forms bit-plane coding directly on the intensity values. The

bit-plane coder uses context-based adaptive binary arithmetic
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Fig. 2. Process of generating a universal grid for two scans.

coding on the bit-planes. It does not perform any type of

transformation on the image pixels, and thus operates in pixel

space.

The arithmetic coder uses contexts for coding of the sig-

nificance pass bits as well as the sign bits. The significance

pass contexts are based upon the number of significant pixels

among the 8 spatially adjacent neighbors surrounding each

pixel. We have found in our tests that limiting the number of

contexts to significant neighbor counts of 0, 1, 2, ..., 6, and 7+

has generally produced excellent results.

The pixels are encoded in a priority-based ordering. The

priority of a pixel is equal to the number of significant neigh-

bors surrounding the pixel. To maintain synchronization be-

tween the encoder and the decoder, in determining this pri-

ority, the encoder is only able to count neighbors which have

already been encoded. Therefore, neighbors which have not

yet been encoded are simply assumed to be insignificant.

The data is encoded until the specified MAD is met. Each

time a bit of a pixel is encoded, the encoder checks if the

target MAD is satisfied for all pixels. If it is, the encoding

stops. We will refer to this method as MAD-BPAC.

4. RESULTS

We show our results on a representative data file derived from

a hand-mixed sample of rabbit aldolase (39 kDa) and bovine

catalase (57 kDa) that were digested with trypsin. To manage

the memory requirements of processing this large file (738

MB), we divide it into bands of 100 daltons (Da) which cor-

responds to approximately 10000 pixels.

We first encode the test file to target MAD values 0-10

with MAD-BPAC and plot the resulting bit rate in Fig. 3. The

bit rates for MAD values within the groups 1-2, 3-6, and 7-

10 are very similar because the bit plane encoder terminated

within the same bit plane. The bit rate for an MAD of 1 is

0.35 bpp. In comparison, the bit rate for an MAD of 0 (cor-

responding to lossless compression) is 1.09 bpp. Thus near-

lossless compression provides a three-fold decrease in the file

size compared to a lossless coding.
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Fig. 3. Compression performance for MAD-BPAC.

To compare the proposed near-lossless algorithm with a

traditional coding method based on minimizing the MSE, we

encode the data to MAD values 0-10 with MAD-BPAC and

compute the resulting bit rate. We then substitute the bit plane

coder with JPEG2000 [12] and encode the data to the same

bit rate as obtained with MAD-BPAC. Fig. 4 shows a scan

after it was decompressed using the two methods at a bit rate

of 0.35 bpp. As expected, the waveform obtained using the

near-lossless codec is much closer to the original data shape

than the waveform obtained using JPEG2000.
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Fig. 4. Decompressed scans using JPEG and MAD-BPAC

techniques vs. the original scan.

Next, we validate the proposed method by detecting and

comparing features from the unprocessed file and data that

was compressed and decompressed by the presented near-

lossless coder. We used msInspect [13] (build 2395, strat-

egy=FeatureStrategyPeakClusters) to detect peptide features

(isotopic series for each charge state) for our analysis. Fig. 5

shows the percent of correctly matched features and the per-

cent of falsely detected features (artifacts) for each bit rate

corresponding to MAD values 1 − 10. The impact of com-

pression on the feature values (the m/z and intensity) is shown
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in Fig. 6.

The MAD-BPAC outperforms JPEG2000 in the number

of correctly identified features. It also tends to detect new

features (mostly with low intensity) that were not found in

the original data. The errors in feature values are largest in

low intensity features. In general, errors increase with larger

MAD. However, as MAD grows (e.g. from 6 to 7), many low

intensity features fail to be detected and the relative intensity

error falls. For m/z, even at MAD of 10 the m/z error is only

on the order of the instrument resolution.
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Fig. 5. Feature detection results for JPEG and MAD-BPAC

techniques.
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Fig. 6. Feature characteristics for the MAD-BPAC technique.

5. CONCLUSION

We have proposed a near-lossless bit plane coder that uses

context-based adaptive binary arithmetic coding. The pre-

sented algorithm guarantees that the intensity of any sample

in the decompressed mass spectrum differs from its original

value by no more than a user-specified quantity. We have

shown that from the perspective of a feature detection tool,

the proposed method preserves data integrity at a much lower

bit rate than a lossless compression algorithm. Therefore, the

near-lossless compression technique is an attractive alterna-

tive to storing or transmitting raw or losslessly encoded data

when storage space or transmission time need to be mini-

mized. Future work includes the design of near-lossless cod-

ing methods that decrease the number of falsely detected fea-

tures.
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