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ABSTRACT

We propose an iterative probabilistic algorithm for estimation
of RNA secondary structure using sequence data from two ho-
mologous sequences. The method is intended to exploit inter-
sequence correlations “encoded” in the form of probabilistic
models for alignment and for common secondary structure.
In analogy with turbo-decoding in digital communications,
we formulate a maximum a posteriori probability objective
function for joint structural prediction and sequence align-
ment using iterations over individual structural and sequen-
tial alignment models with soft-input soft-output estimators.
As a preliminary step toward realizing this methodology, we
present results obtained from incorporating (hard) constraints
based on posterior sequence alignment probabilities in joint
secondary structure prediction. Through experimental evalu-
ations over available databases of known secondary structure,
we demonstrate that this results in a signi cant decrease in
computation time while simultaneously providing a marginal
increase in structural prediction accuracy.

Index Terms—RNA, secondary structure , pairwise align-
ment, structural alignment, Iterative probabilistic decoding.

1. INTRODUCTION

Since the three-dimensional shape of biological molecules de-
termines their physiological function, the estimation of molec-
ular structure constitutes one of the fundamental problems in
biology. Accurate estimates of structure can help in under-
standing interactions among different biomolecules, which in
turn can assist in drug discovery and in development of al-
ternate cures. Computational approaches that estimate the
structure from more readily obtainable genome/proteome se-
quence data are particularly attractive in this respect because
of their signi cantly lower cost in comparison to experimen-
tal procedures (e.g. X-ray crystallography). In this paper we
address the problem of computationally estimating secondary
structure for RNA molecules. Once the primary structure of
an RNA molecule, i.e. the sequence of the bases adenine (A),
guanine (G), cytosine (C), and uracil (U) that determines the

linear chain forming the “backbone” of the molecule, is ob-
tained from sequencing1, the next step in the structural es-
timation progression is the determination of secondary struc-
ture, which is de ned as the set of base pairingsA−U ,G−C,
and G − U formed through hydrogen bond interactions be-
tween the nucleotides in the linear chain. The sequential esti-
mation process mirrors the hierarchy of RNA structure forma-
tion, which is commonly referred to as folding [2]. Examples
of secondary structure for RNAmolecules are shown in Fig 1.
Computational methods for RNA secondary structure pre-

diction can be classi ed in two major categories based on
the information they utilize: a) Single sequence prediction
methods that attempt to infer the structure of a single RNA
strand, or b) Multi-Sequence methods that work on multiple
RNA sequences to infer their common homologous structure.
Multi-sequence methods jointly perform the tasks of align-
ing and predicting the common secondary structure for the
multiple sequences. The inter-sequence comparative analy-
sis inherent in this process provides a major bene t and leads
to signi cant improvement in structural prediction accuracy
scores over single sequence prediction methods [3]. Com-
putational requirements, on the other hand, are substantially
higher for multi-sequence methods and grow with increasing
number of sequences. Therefore, a majority of the current
methods work with two sequences, though limited effort has
also been directed to extending these methods to more than
two sequences [4].
Current promising techniques for the prediction of RNA

secondary structure are based either on thermodynamic mod-
els that predict common secondary structure using free-energy
minimization as a predictor of structure likelihood [5] or on
statistical learning techniques, primarily, stochastic context
free grammars that provide probabilistic estimates by utiliz-
ing a model trained on a dataset with known alignment and
secondary structure [6, 7]. In both cases, the problem is ren-
dered computationally tractable by the use of dynamic pro-
gramming, an approach rst proposed by Sankoff [8] for the
joint problem of alignment and secondary structure predic-

1For introductory background on sequencing, see for example [1].
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tion for multiple sequences. As compared to the exponential
complexity of brute force evaluation, Sankoff’s algorithm and
its aforementioned variants have a computational complexity
of O(N6) in time and O(N4) in memory, where N is the
length of the smaller of the two sequences. Despite the sig-
ni cant improvement (of polynomial complexity), for typical
sequence lengths of interest, further constraints are normally
required in order to make the run time reasonable on current
hardware. The constraints range from a heuristic restriction of
the alignment region to a band based on a guess of the max-
imum insertion length [8, 9] to restraints on alignment and
folding to the union of the sets of K-best sub-optimal align-
ments and folds [7], for some choice of K.

2. PROBABILISTIC FRAMEWORK FOR JOINT
ALIGNMENT AND SECONDARY STRUCTURE

PREDICTION

Given two RNA sequences x1 and x2, a maximum likelihood
(ML) formulation for the problem of joint alignment and sec-
ondary structure prediction is obtained as

(A∗,S∗) = arg max
A,S

p(x1x2 | A,S) (1)

where A, denotes an alignment of the two sequences and S
denotes a common secondary structure. Formal de nitions of
alignment and common (secondary) structure may be found
in [8]. We con ne ourselves to observing that an alignment
between the two RNA sequences arranges the bases in the
sequences along a single “time-axis”, as shown by an exam-
ple in Fig. 2, where at each point there is a base from one or
both of the sequences and gaps, denoted by �, occupy posi-
tions at where there is no nucleotide from a sequence. The
term common secondary structure, following biological con-
vention, refers to topological equivalence rather than exact
match between the structures. Figure 1 illustrates two tRNA
molecules with common secondary structure.
Although, dynamic programming allows a polynomial time

solution for the ML formulation of joint alignment and sec-
ondary structure prediction, the approach suffers from a cou-
ple of limitations in practice. Firstly, though fairly sophisti-
cated models exist for prediction of alignment, only relatively
simple methods are readily integrated in the joint formulation
(e.g. a linear or af ne penalty for gaps and possibly mismatch
penalties). Similarly, models for secondary structure of in-
dividual sequences are often more sophisticated than those
used for the joint problem. Secondly, the computational com-
plexity of the ML problem remains too high for practical de-
ployment on typical RNA molecules and therefore practical
variants of the Sankoff algorithm described in Section 1 per-
form only a restricted search. For example, in [7] the search
is limited to the set of K-best (for some choice of K) align-
ments and folds (i.e. secondary structure) where the former
are determined purely from sequence alignment models and
the latter from single sequence folding methods.

As an alternative to the ML formulation, we propose a
base-pair by base-pair maximum a posteriori probability (MAP)
approach for the problem of joint secondary structure and
alignment, working ultimately toward the development of an
iterative decoding method that alternates between the align-
ment and structural models. The a posteriori probability of
base pairing with respect to sequence alignment model,MA

and structural model,MS , can be written as

P(i � k | x1,x2,MA,MS) (2)

where � denotes pairing of nucleotide positions i and j in se-
quences x1. A similar expression can be obtained for the base
pairing probabilities in the second sequence x2. Likewise the
a posteriori probability for alignment of nucleotide position
i in the rst sequence with nucleotide position k in the second
sequence can be expressed as P(i ⇔ k | x1,x2,MA,MS),
where⇔ denotes alignment.
Computation of these probabilities (and the MAP solu-

tion) is computationally demanding. We therefore propose
a heuristic simpli cation by making analogy with iterative
probabilistic (turbo) decoding techniques in digital commu-
nications: We treat the problems separately for the alignment
and the secondary structure models and iterate over these through
the exchange of soft information in order to obtain an ap-
proximate solution to the joint MAP problems. At each it-
eration, the resulting subproblems require calculation of the
posterior probabilities P(i ⇔ k | x1,x2,MA) and P(i ⇔
k | x1,x2,MS) while incorporating soft information from
each other in the form of “pseudo-priors”. Furthermore, in yet
another heuristic modi cation, we can incorporate more so-
phisticated models for the alignment and secondary structure
than is feasible in the joint model. Note that we express these
problems in terms of alignment posterior probabilities since
the alignment forms the primary source of inter-sequence in-
formation, whereas the secondary structure is composed of
intra-sequence base pairs. The posterior probability of base
pairing may be evaluated once iterations are completed in or-
der to obtain an estimated structure.
In order to accomplish iterative probabilistic decoding of

secondary structure, we need soft-input soft-output estima-
tors for both models. Hidden Markov models are a natural
choice for the alignment modelMA. In the next section, we
present a brief outline of the computation of posterior align-
ment probabilities under the alignment model. The computa-
tion of posterior alignment and pairing probabilities under the
structural model can be performed through a computation of
the Boltzmann partition function that we intend to undertake
in future work. As a preliminary result, we also apply the pos-
terior probability estimates to obtain improved (though hard)
constraints for current joint structure and alignment methods.

2.1. Posterior Pairwise Alignment Probabilities
Alignment between two sequences x1 and x2 each represent-
ing bases along an RNA molecular chain can be effectively
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modeled by a Hidden Markov Model [10, 3]. The Model
uses 3 hidden states M = {ALN, INS1, INS2}, where each
state outputs an ordered pair of symbols from the alphabet
{A,C,G,U,�}. The rst four symbols in output alphabet
correspond to nucleotides and last symbol corresponds to a
gap. The ordered outputs of each state form two sequences.
Individual output sequences are denoted by lowercase bold-
face letters namely x1 and x2 for the case of two sequences.
Speci c nucleotides or subsequences selected from a sequence
are indicated by prescripts: n1

x denotes the n1
th nucleotide

of the 1st sequence and n2

n1
x denotes the subsequence of nu-

cleotides from index n1 to n2 in sequence x.
Posterior probabilities, P(n1 ↔ n2,m | x1,x2), corre-

sponding to co-incidence [11] of nucleotides n1 and n2 in
state m, are ef ciently computed in terms of recursions in-
volving a forward-variable and a backward-variable. Denote
by Sm(n1, n2) the event that the state ism at the point when
n1 nucleotides corresponding to the rst sequence and n2 nu-
cleotides corresponding to the second sequence have been
emitted. The forward-variable is then de ned as the joint
probability

αm(n1, n2) = P(Sm(n1, n2),
n1

1x1,
n2

1x2), (3)

i.e., the probability that the subsequence n1

1x1 of n1 nu-
cleotides is emitted in the rst sequence, the subsequence
n2

1x2 of n2 nucleotides is emitted in the second sequence,
and the state (of the alignment Markov process) is m. The
backward variable is de ned as the conditional probability

βm(n1, n2) = P( N1

n1+1x1,
N2

n2+1x2 | Sm(n1, n2)), (4)

i.e., the probability that subsequences N1

n1+1x1 and N2

n2+1x2

are observed given that state ismwhen n1 and n2 nucleotides
have been emitted in the rst and second sequence, respec-
tively. HereN1 andN2 represent the lengths of sequences x1

and x2, respectively. The forward variable can be computed
recursively as:

αm′(n1, n2) =
∑

m∈M

τ(m,m′) · γm′(u1(n1,m
′), u2(n2,m

′)) ·

πm′(n1, n2) · αm(n′
1(n1,m), n′

2(n2,m)) (5)

where n′
1(n1,m) and u1(n1,m) are:

(n′
1, u1)(n1,m) =

{
(n1,�) ifm = INS2
(n1 − 1,n1

x1) otherwise (6)

and n′
2(n2,m) and u2(n2,m) are similarly de ned. The

term τ(m,m′) corresponds to probability of transition from
state m to m′, γm′(·) corresponds to emission probability of
the ordered symbol pair (u1(n1,m

′), u2(n2,m
′)) by statem′

and πm′(n1, n2) corresponds to prior probability of state at
indices (n1, n2) estimated from structural alignment.
Recursions for the backward variable are similarly estab-

lished.

PPV Sensitivity
Dynalign (Previous) 0.796 0.862

Single Prediction 0.609 0.687
Dynalign (Proposed) 0.803 0.865

Table 1. Average structural prediction accuracy statistics for
the three methods over 2000 random tRNA and 2000 random
5S RNA alignments.

3. PROBABILISTIC CONSTRAINTS IN
SECONDARY STRUCTURE PREDICTION

As a rst step in iterative probabilistic estimation of secondary
structure, we consider the incorporation of probabilistically
derived hard constraints from sequence alignment model into
secondary structure prediction. The pairwise hidden Markov
model and constraint calculation is implemented [11]. For
joint structure prediction we use the Dynalign [12] program.
Constraints are incorporated in Dynalign as a set of nu-

cleotide position pairs from the two sequences that maybe co-
incident [11]. Accordingly, constraints are de ned by thresh-
olding posterior co-incidence probabilities:

C = {(n1, n2) | P(n1 ↔ n2 | x1,x2) > Pthresh} (7)

where↔ denote co-incidence event and co-incidence proba-
bility is de ned as the sum:

P(n1 ↔ n2 | x1,x2) =

∑
m∈M αm(n1, n2)βm(n1, n2)∑

m∈M αm(N1, N2)
(8)

whereN1 andN2 correspond to length of 1st and 2nd sequence
respectively. Denominator in (8) corresponds to P (x1,x2)
The threshold probability Pthresh mediates a trade-off between
the possibility of missing alignment positions and the compu-
tational complexity [11].

4. RESULTS

Probabilistic alignment constraints are tested on 2000 ran-
domly chosen 5S RNAs and tRNA pairs for structural pre-
diction accuracy. The performance is compared across three
methods: a) Single sequence structure prediction [13] b) Dy-
nalign with previous banded alignment constraints and c) Dy-
nalign with the proposed probabilistic alignment constraints.
Table 1 summarizes the average structural prediction accu-
racy results on these two sets.
Results are tested in terms of sensitivity (≈ probability

of detections) and positive predictive value (PPV) (≈ 1 −
false detection probability). It can be seen that there is a marginal
increase in both sensitivity and positive predictive value with
the proposed method. Table 2 summarizes timing require-
ments of probabilistic alignment constraints versus banded
alignment constraints.
It can be seen that the proposed method offers a signi cant

speedup. There is around 1.25 − 3 timing saving on average
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tRNA 5S RNA
Dynalign (Previous) 38.53 236.03

Dynalign (Proposed) 30.77 84.95

Table 2. Average CPU times (in seconds) for Dynalign with
M (= 7) constraint and Dynalign with probabilistic alignment
constraints over 100 randomly chosen 5S RNA and tRNA
alignments each from [14] and [15]. A 3.0 GHz Intel Pen-
tium 4 system with 1 GBytes of main memory running Linux
Fedora Core 4 was utilized for the timing experiments.

using probabilistic alignment constraints with Dynalign. It
should be noted that the timing gain for 5S RNAs is higher
compared to that of tRNAs where 5S RNAs are about 1.5
times length of tRNAs on the average.

5. CONCLUSIONS

In this paper, we proposed an iterative approach for solving
the problem of joint structure prediction and alignment for
RNA sequences. The method is motivated by soft-input soft-
output probabilistic iterations which are used in turbo decod-
ing algorithms.
As a rst step in this direction, we presented a method

for determining constraints for joint prediction of secondary
structure and alignment based on estimates of a posteriori
coincidence probabilities estimated using a Hidden Markov
Model. When integrated with Dynalign, an existing method
for secondary structure prediction, the constraints signi cantly
reduce computational requirements while simultaneously of-
fering a small improvement in structural prediction accuracy.
The speedup is particularly signi cant because it allows the
algorithm to be deployed on larger sequences than was previ-
ously feasible.
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Fig. 1. Common secondary structure for RD0260 and
RD0500 tRNA molecules

G C CACG  CU
GUCUG CUAAUU

A
L

N

A
L

N

IN
S2

IN
S2Alignment State

Sequence A
L

N

IN
S1

A
L

N

A
L

N

IN
S2

IN
S2

A
L

N

A
L

N

Sequence 1
Sequence 2

���
�

�

Fig. 2. A pairwise alignment and corresponding states

6. REFERENCES

[1] J. D. Watson, T. A. Baker, S. P. Bell, A. Gann, M. Levine, and
R. Losick, Molecular Biology of the Gene, 5th ed. San Franciso,
CA: Pearson Education, Benjamin Cummings, 2004.

[2] I. Tinoco, Jr. and C. Bustamante, “How RNA folds,” J Mol Biol, vol.
293, no. 2, pp. 271–281, 1999.

[3] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence
Analysis : Probabilistic Models of Proteins and Nucleic Acids. Cam-
bridge, UK: Cambridge University Press, 1999.

[4] B. Masoumi and M. Turcotte, “Simultaneous alignment and structure
prediction of three RNA sequences,” Int J Bioinformatics Research
and Applications, vol. 1, pp. 230–245, 2005.

[5] D. H. Mathews and D. H. Turner, “Dynalign: An algorithm for nding
the secondary structure common to two RNA sequences,” Journal of
Molecular Biology, vol. 317, pp. 191–203, 2002.

[6] R. D. Dowell and S. R. Eddy, “Evaluation of several lightweight
stochastic context-free grammars for RNA secondary structure pre-
diction,” BMC Bioinformatics, vol. 5, no. 1, p. 71, 2004.

[7] I. Holmes, “Accelerated probabilistic inference of RNA structure evo-
lution,” BMC Bioinformatics, vol. 6, no. 1, p. 73, March 2005.

[8] D. Sankoff, “Simultaneous solution of RNA folding, alignment and
protosequence problems,” SIAM Journal of Applied Mathematics,
vol. 45, no. 5, pp. 810–825, Oct. 1985.

[9] A. V. Uzilov, J. M. Keegan, and D. H. Mathews, “Detection of non-
coding RNAs on the basis of predicted secondary structure formation
free energy change,” BMC Bioinformatics, vol. 7, no. 1, p. 173, 2006.

[10] L. R. Rabiner and B. H. Juang, “An introduction to hidden markov
models,” ASSPMAG, vol. 3, no. 1, pp. 4–16, Jan. 1986.

[11] A. Harmanci, G. Sharma, and D. Mathews, “Ef cient pairwise RNA
structure prediction using probabilistic alignment constraints in dy-
nalign,” BMC Bioinformatics, vol. 4, 2006, submitted for review Sept.
2006.

[12] D. H. Mathews, “Predicting a set of minimal free energy RNA sec-
ondary structures common to two sequences,” Bioinformatics, vol. 21,
no. 10, pp. 2246–2253, May 2005.

[13] M. Zuker, “Computer prediction of RNA structure,” Methods in Enzy-
mology, vol. 180, pp. 262–288, 1989.

[14] M. Szymanski, M. Z. Barciszewska, J. Barciszewski, and V. A. Erd-
mann, “5S ribosomal RNA database Y2K,” Nucleic Acids Research,
vol. 28, pp. 166–167, 2000.

[15] M. Sprinzl, C. Horn, M. Brown, A. Ioudovitch, and S. Steinberg,
“Compilation of tRNA sequences and sequences of tRNA genes,” Nu-
cleic Acids Research, vol. 26, pp. 148–153, 1998.

I  368


