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ABSTRACT 

This paper presents the design and implementation of a generic and 
highly parameterised FPGA-based core for pairwise biological 
sequence alignment. The core is captured in the Handel-C 
language, which allows for high level software-like descriptions of 
hardware architectures. It implements the sequence alignment 
algorithm in hand using a pipeline of basic processing elements. 
This results in high performance FPGA implementations tailored to 
the algorithm in hand. For instance, actual hardware 
implementations of the Smith-Waterman algorithm for protein 
sequence alignment achieve speed-ups in excess of 100:1 
compared to equivalent standard PC-based software 
implementations.

Index Terms— Sequence alignment, systolic arrays, 
FPGAs, Smith Waterman, Handel-C

1. INTRODUCTION 

Biological sequence alignment aims to find out whether two or 
more sequences (e.g. DNA or protein sequences) are related, which 
is of great importance in early disease diagnosis, drug engineering, 
and the study of evolutionary development [1]. Because of the 
exponential growth of biosequence databases, however, there is 
indeed a need to speed-up biosequence analysis algorithms in order 
to keep up with this growth rate. One way to achieve this has been 
to develop heuristics to reduce the search space and hence the 
execution time of sequence alignment algorithms [2][3]. The main 
drawback of these implementations is that the quality of the results 
is inversely proportional to the speed of execution of the heuristics 
[4]. In this paper, we concentrate on the exhaustive search 
algorithms where the quality of results is guaranteed upfront. For 
these, many Single Instruction Multiple Data and systolic 
architectures using special purpose hardware have been built to 
speed up their execution [5][6][7]. More recently, reconfigurable 
hardware in the form of Field Programmable Gate Arrays (FPGAs) 
has been used as a high performance programmable platform for 
sequence alignment [8][9][10]. Although early results have proved 
very promising, FPGA-based bioinformatics and computational 
biology, in general, suffers from a big knowledge gap between 
bioinformaticians and molecular biologists on the one side and 
hardware engineers on the other side [9]. 

In an attempt to make a contribution towards bridging the 
aforementioned gap, this paper presents the design and 
implementation of a generic and highly parameterized FPGA core 
for pairwise biological sequence alignment. Compared to 
previously published FPGA implementations, our solution 
provides the most parameterized one, hence allowing users to tune 
in FPGA hardware to suit their particular needs.  

The remainder of this paper is organized as follows. Section 2 
presents important background on biological sequence alignment 

algorithms. In section3, we highlight previous work in the area of 
high performance biological sequence alignment. The design and 
FPGA implementation of our highly parameterized core is detailed 
in section 4, after which a comparative evaluation of our 
implementation results is given. Finally, conclusions and plans for 
future work are laid out. 

2. BACKGROUND 

Biological sequences evolve through a process of mutation, 
selection and random genetic drift [11]. Mutation, in particular, 
manifests itself through the introduction of gaps. The degree of 
alignment of sequences is measured by a score, which is obtained 
by a summation of terms of each aligned pair of residue in addition 
to possible gap terms. Score terms for each aligned residue terms 
are obtained from probabilistic models and stored in a score or
substitution matrix e.g. BLOSUM50 [1]. 

Gap penalties depend on the length of the gap and are generally 
assumed independent of the gap residues. There are two main types 
of gap penalties: linear and affine. In the former, the cost of a gap 
of length g is Penalty(g)=-g*d, where d is a constant. In the latter 
case, a constant penalty is assigned for opening a new gap, while a 
linear and smaller penalty is given to subsequent gap extensions:
Penalty(g)=-d-(g-1)*e, where both d and e are constants.  

The following discusses two alignment algorithms with linear 
gap penalty, namely: the Needleman-Wunsch algorithm and the 
Smith-Waterman algorithm. The case of affine gap will be 
explained in section 2.2.
2.1 Alignment Algorithms with Linear Gap Penalties 
The Needleman-Wunsch algorithm is a dynamic programming 
algorithm for finding the optimal global alignment between two 
sequences X = x1x2…xi…xM (of length M), and Y = y1y2…yi…yN (of 
length N) [12]. The matrix F of scores, which indicates the best 
alignment between sequences X and Y, is built recursively using 
the following equation: 
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Where F(0,0)=0, F(i,0)=-i*d and F(0,j)=-j*d. The best alignment 
between X and Y is the largest score of three alternatives: 

An alignment between xi and yj, in which case the new score 
is F(i-1,j-1)+s(xi,yj) where s(xi,yj) is the substitution matrix 
score or entry for residues xi and yj.
An alignment between xi and a gap in Y, in which case the 
new score is F(i-1,j)-d, where d is the gap penalty.  
An alignment between yj and a gap in X, in which case the 
new score is F(i,j-1)-d, where d is the gap penalty. 

This is the illustrated graphically in Figure 1 below. 
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Figure1. Dynamic Programming and dependency illustration 

It is, however, biologically more useful to look for the best 
alignment between subsequences of X and Y [1]. The Smith-
Waterman algorithm finds exactly that, and is based on the 
following recursive equation [13]: 
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Compared to equation (1), the term 0 is added to the maximum. As 
a consequence of this, F(i,0) and F(0,j) should be set to 0’s instead 
of –i*d and –j*d respectively. 

2.2 Alignment with Affine Gap
A similar algorithm to the one presented for linear gap penalties 
can be used for affine gap. However, multiple values of each pair 
of residue (i,j) need to be computed instead of one. Figure 2 
illustrates the case where three values need to be computed for 
each residue pair [1]. These equations assume that an insertion is 
not directly followed by a deletion (or vice versa). This can be 
guaranteed for the optimal path if the lowest possible mismatch 
score in the substitution matrix is greater than –d-e. 
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Figure2. The case of affine gap penalties 

Another algorithm is used in the case of affine gap penalties if the 
lowest possible mismatch score in the substitution matrix is greater 
than -2e. In it, there are two values for each residue pair instead of 
three as shown below. 
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3. HIGH PERFORMANCE BIOLOGICAL SEQUENCE 
ANALYSIS: PREVIOUSE WORK 

The computational complexity of the above dynamic programming 
algorithms for pairwise sequence alignment is proportional to the 
product of the lengths of the two sequences to be aligned i.e. 
O(M*N). Scanning a database with hundreds of thousands of 
sequences usually takes several hours on a PC [1][8]. Given the 
exponential growth rate of biological sequence databases, this 
problem is set to intensify. 

In order to speed up sequence analysis algorithms, a number of 
parallel architectures have been developed. Single Instruction 
Multiple Data (SIMD) architectures based on a network of 
programmable processors are among these solutions, and include 

the MGAP [5], Kestrel [6] and Fuzion [7]. Although such 
architectures are capable of considerable speed-ups compared to a 
standard PC solution, they are often costly both in terms of design 
and programming [10].  

Other solutions have used special purpose hardware for the 
implementation of parallel processing elements with the aim of 
increasing processing density and achieving even higher speed-ups. 
Such architectures also allow for systolic arrays to be implemented. 
Instances of this family of architectures include BISP [14], 
SAMBA [15] and BIOSCAN [16]. The advent of reconfigurable 
hardware in the form of FPGAs makes such architectures even 
more appealing. FPGAs after all are capable of providing 
considerable speed-ups compared to general purpose processors 
with the added convenience of reprogramability. An algorithm 
implementation could hence be tuned to different needs both at 
compile time and at run-time. Moreover, FPGAs are now riding the 
process technology curve [17] which makes them even more 
attractive a solution as a reliable high performance platform for 
biocomputing [18][19]. For instance, a number of FPGA 
implementations of the Smith-Waterman algorithm have been 
reported in the literature recently [8][9][10]. However, none of 
these implementations offers the same degree of parameterisability 
as our implementation. The latter was designed using a high level 
hardware language in the form of the ANSI-C based Handel-C 
language [20], and achieved performance figures comparable to the 
best results reported in the literature, if not better, as will be shown 
in Section 5. This in itself is important as it means that higher level 
hardware languages can be used to achieve high performance 
implementations of computational biology applications, and hence 
bridge the aforementioned gap between bioinformatics and 
computational biology applications and high performance 
hardware platforms.  

4. OUR HARDWARE IMPLEMENTATION 

Figure 3 presents a linear systolic array implementation for general 
purpose pairwise sequence alignment based on the dynamic 
programming algorithms presented in section 2 above. The linear 
systolic array consists of a pipeline of basic processing elements 
(PE) holding query sequence residues, whereas the subject 
sequence is shifted systolically through the array (from the 
database). A FIFO is used to store intermediate results for multi-
pass processing, which is only needed when the FPGA chip in 
hand cannot fit all of the query sequence. Each PE holds one or 
more residues of the query sequence and performs one elementary 
calculation in one clock cycle thereby generating one alignment 
matrix element F(i,j).  However the calculation at PEi+1 depends on 
the result from PEi, which means that each PE is one cycle behind 
its predecessor. The full alignment of two sequences of lengths N
and M is hence achieved in M+N-1 cycles. Figure 4 illustrates the 
execution of the recursive equation of the Smith Waterman 
algorithm in such architecture. The elements on each diagonal line 
can be computed in parallel in one clock cycle. 

As stated above, multi-pass processing is needed when the 
query sequence cannot fit into the FPGA chip in hand. This is 
usually the case for real world databases. For instance, the number 
of PEs that could be implemented on a Xilinx XC2V6000 Virtex-II 
FPGA in the case of the Smith-Waterman Algorithm with affine 
gap penalties is ~250. This represents the maximum query length 
that can be fitted on the FPGA. Real world biological sequence 
lengths, however, are often in the hundreds if not in the thousands. 
In such cases, the algorithm in hand should be partitioned into 
small alignment steps which are then mapped onto a fix size linear 
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systolic array. This problem is well studied in the VLSI design 
arena and involves proper scheduling of input and intermediate 
data [21]. 
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}
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{
F(i,j)=0; 
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}
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Figure3. Smith-Waterman sequence alignment algorithm on fixed 
size systolic array architecture 
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Figure4. Illustration of the execution of the Smith-Waterman 
example on the linear array processor of Figure 3 

Based on the hardware architecture presented in Figure 3, we have 
captured all of the variations of a generic pairwise sequence 
alignment algorithm into a single FPGA core written in Handel-C 
[20]. The final core that we have developed is prameterisable in 
terms of the sequence symbol type e.g. DNA or Protein sequences, 
query sequence, maximum subject sequence length, the match 
score i.e. the score attributed to a symbol match depending on the 
substitution matrix used, the gap penalty, linear or affine, the 
matching task i.e. the alignment algorithm used to match 
sequences, which could be global or local, and the match score 
threshold, which is the match score threshold below which any 
subject sequence is rejected. The core automatically infers the 
necessary minimum processing wordlength based on the user-
supplied parameters and harnesses constant propagation. It has 
been written without any FPGA-specific directives e.g. specific 
resource inference or placement constraints, which makes it 
directly retargetable across a variety of platforms including Xilinx 
and Altera FPGAs. 

5. PERFORMANCE AND EVALUATION

Celoxica’s DK4 suite was used to compile our core into EDIF, 
whereas Xilinx ISE7.1 tool was used to generate the configuration 
bitstreams for Xilinx FPGAs. A single PE in the case of the Smith-

Waterman algorithm for protein sequences, with linear gap penalty 
and 16 bit processing wordlength, consumes ~30 slices on average 
on Xilinx Virtex-II FPGAs, whereas an equivalent affine gap 
penalty using the equations given in Figure 2, consumes ~85 slices. 
An equivalent single PE with affine gap penalty using Equations 
(3), however, consumes ~70 slices.  
 Table 1 presents sample performance figures for instances of 
our core assuming protein sequences and single pass 
implementations. Affine2 and Affine3 refer to the affine gap 
models given in Equations (3) and Figure 2 respectively. The 
CUPS (or Cell Updates Per Second) performance is a common 
performance measure used in computational biology. Its inverse 
represents the equivalent time needed for a complete computation 
of one entry of the alignment matrix, including all the comparisons, 
additions and maximum computations. The peak CUPS of our 
implementation is measured by multiplying the number of PEs and 
the maximum clock frequency.  

Number of 
PEs 

Gap
Penalty 

Processing Word 
length

Max 
Speed 
(MHz)

Peak 
Performance
(CUPS x109)

Needleman-Wunsch 
252 Linear 16 50.6 12.75 

Smith-Waterman 
100 Linear 16 43.5 4.35 
252 Linear 10 47.7 12.02 
100 Affine2 16 66.7 6.67 
168 Affine2 16 47.6 8.00 
100 Affine3 10 58.8 5.88 
168 Affine3 16 40.0 6.72 

Table1. Core performance for different instances of our core on a 
Xilinx XC2V6000-4 FPGA 

Table 2 presents sample results for instances of our core assuming 
protein sequences and multi-pass implementations with k (the 
number of passes, or folding factor) equal to 3 and 12 respectively. 

Number of 
PEs 

Gap
Penalty

Processing Word 
length

Clock
frequency 

(MHz)

Peak 
Performance

(GCUPS)
k=3

252 Linear 10 40.0 10.09 
168 Affine2 10 62.5 10.50 
168 Affine3 10 45.6 7.66 

k=12
168 Linear 10 40.3 6.77 
119 Affine3 10 50.4 5.99 

Table2. Core performance for different instances of a multi-pass 
implementation (i.e. k>1) 

Equivalent software implementations written in C and running on a 
Pentium-4 1.6 GHz achieve ~50 MegaCUPS performance, which 
means that the above core outperforms equivalent software 
implementation by two order of magnitudes (100:1+). Given the 
relative cost of FPGAs compared to general purpose processors 
(often in the order of 10:1) the above performance largely offsets 
their cost, which shows that FPGAs could be an economical 
implementation platform for biological sequence analysis 
applications.

Compared to an implementation reported in [9] on a Xilinx 
XC2VP30 FPGA, our core achieves twice the speed. It also 
outperforms the implementation reported in [8] by 3:1. The 
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Verilog-based implementation reported in [10], however, is the 
closest to our core implementation as it is based on the same 
hardware architecture. Compared to it, our core performs almost as 
well despite the fact that we have not introduced any placement 
constraints. This is a testament to the Handel-C language as well as 
the corresponding synthesis tool.   

Moreover, none of the above implementations offer the same 
degree of parameterisation as our core. Indeed, the implementation 
reported in [8] only supports the Smith-Waterman algorithm with 
linear gap penalty, whereas the implementation reported in [9] does 
not address the problem of partitioning/mapping. The 
implementation in [10] supports both partitioning/mapping and 
affine gap penalties. However, its affine gap model is based on the 
equations given in Figure 2 only, and hence does not take 
advantage of the hardware optimisations introduced by Equations 
(3).

6. CONCLUSION 

In this paper, we have presented the design and implementation of 
a highly parameterised core for FPGA-based pairwise biological 
sequence alignment. The core is parameterised in terms of the 
sequence symbol type, the sequence lengths, the match score, the 
gap penalty and the matching task. It implements the algorithm in 
hand using a pipeline of basic processing elements, with a number 
of built-in hardware optimisations. These include automatic 
minimum wordlength inference and compile-time constant 
propagation. The core results in high performance FPGA 
implementations which outperform equivalent desktop-based 
software implementations by two order-of magnitudes. This shows 
that FPGAs could offer a relatively low cost high performance 
implementation platform for biological sequence alignment 
algorithms.

The core has been captured in the Handel-C language which 
proved very convenient in describing scalable and parameterised 
hardware architectures, with a relatively lower learning curve 
compared to other hardware description languages.  

The work presented in this paper is part of a bigger effort by the 
authors which aims to harness the computational performance and 
reprogramability features of FPGAs in the field of Bioinformatics 
and Computational Biology. Future work includes the 
implementation of sub-optimal sequence alignment algorithms 
including the BLAST algorithm on FPGAs, as well as the use of 
Hidden Markov Models for biological sequence analysis. 
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