
HIGH PERFORMANCE BIOSEQUENCE DATABASE SCANNING USING FPGAS

K. Benkrid, Y. Liu, and A. Benkrid
The University of Edinburgh, School of Engineering and Electronics, the King's Buildings, Mayfield

Road, Edinburgh, EH9 3JL, Scotland
k.benkrid@ieee.org

ABSTRACT

This paper presents the design and implementation of a generic and
highly parameterised FPGA-based core for pairwise biological
sequence alignment. The core is captured in the Handel-C
language, which allows for high level software-like descriptions of
hardware architectures. It implements the sequence alignment
algorithm in hand using a pipeline of basic processing elements.
This results in high performance FPGA implementations tailored to
the algorithm in hand. For instance, actual hardware
implementations of the Smith-Waterman algorithm for protein
sequence alignment achieve speed-ups in excess of 100:1
compared to equivalent standard PC-based software
implementations.

Index Terms— Sequence alignment, systolic arrays,
FPGAs, Smith Waterman, Handel-C

1. INTRODUCTION

Biological sequence alignment aims to find out whether two or
more sequences (e.g. DNA or protein sequences) are related, which
is of great importance in early disease diagnosis, drug engineering,
and the study of evolutionary development [1]. Because of the
exponential growth of biosequence databases, however, there is
indeed a need to speed-up biosequence analysis algorithms in order
to keep up with this growth rate. One way to achieve this has been
to develop heuristics to reduce the search space and hence the
execution time of sequence alignment algorithms [2][3]. The main
drawback of these implementations is that the quality of the results
is inversely proportional to the speed of execution of the heuristics
[4]. In this paper, we concentrate on the exhaustive search
algorithms where the quality of results is guaranteed upfront. For
these, many Single Instruction Multiple Data and systolic
architectures using special purpose hardware have been built to
speed up their execution [5][6][7]. More recently, reconfigurable
hardware in the form of Field Programmable Gate Arrays (FPGAs)
has been used as a high performance programmable platform for
sequence alignment [8][9][10]. Although early results have proved
very promising, FPGA-based bioinformatics and computational
biology, in general, suffers from a big knowledge gap between
bioinformaticians and molecular biologists on the one side and
hardware engineers on the other side [9].

In an attempt to make a contribution towards bridging the
aforementioned gap, this paper presents the design and
implementation of a generic and highly parameterized FPGA core
for pairwise biological sequence alignment. Compared to
previously published FPGA implementations, our solution
provides the most parameterized one, hence allowing users to tune
in FPGA hardware to suit their particular needs.

The remainder of this paper is organized as follows. Section 2
presents important background on biological sequence alignment

algorithms. In section3, we highlight previous work in the area of
high performance biological sequence alignment. The design and
FPGA implementation of our highly parameterized core is detailed
in section 4, after which a comparative evaluation of our
implementation results is given. Finally, conclusions and plans for
future work are laid out.

2. BACKGROUND

Biological sequences evolve through a process of mutation,
selection and random genetic drift [11]. Mutation, in particular,
manifests itself through the introduction of gaps. The degree of
alignment of sequences is measured by a score, which is obtained
by a summation of terms of each aligned pair of residue in addition
to possible gap terms. Score terms for each aligned residue terms
are obtained from probabilistic models and stored in a score or
substitution matrix e.g. BLOSUM50 [1].

Gap penalties depend on the length of the gap and are generally
assumed independent of the gap residues. There are two main types
of gap penalties: linear and affine. In the former, the cost of a gap
of length g is Penalty(g)=-g*d, where d is a constant. In the latter
case, a constant penalty is assigned for opening a new gap, while a
linear and smaller penalty is given to subsequent gap extensions:
Penalty(g)=-d-(g-1)*e, where both d and e are constants.

The following discusses two alignment algorithms with linear
gap penalty, namely: the Needleman-Wunsch algorithm and the
Smith-Waterman algorithm. The case of affine gap will be
explained in section 2.2.
2.1 Alignment Algorithms with Linear Gap Penalties
The Needleman-Wunsch algorithm is a dynamic programming
algorithm for finding the optimal global alignment between two
sequences X = x1x2…xi…xM (of length M), and Y = y1y2…yi…yN (of
length N) [12]. The matrix F of scores, which indicates the best
alignment between sequences X and Y, is built recursively using
the following equation:

1
,)1,(
,),1(

),()1,1(
max),(

,

djiF
djiF

yxsjiF
jiF

ji-

Where F(0,0)=0, F(i,0)=-i*d and F(0,j)=-j*d. The best alignment
between X and Y is the largest score of three alternatives:

An alignment between xi and yj, in which case the new score
is F(i-1,j-1)+s(xi,yj) where s(xi,yj) is the substitution matrix
score or entry for residues xi and yj.
An alignment between xi and a gap in Y, in which case the
new score is F(i-1,j)-d, where d is the gap penalty.
An alignment between yj and a gap in X, in which case the
new score is F(i,j-1)-d, where d is the gap penalty.

This is the illustrated graphically in Figure 1 below.

I ­ 3611­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

F(i-1,j-1) F(i,j-1)

F(i-1,j) F(i,j)

-d

-d

s(xi,yj)

Figure1. Dynamic Programming and dependency illustration

It is, however, biologically more useful to look for the best
alignment between subsequences of X and Y [1]. The Smith-
Waterman algorithm finds exactly that, and is based on the
following recursive equation [13]:

2

)1,(
,),1(

),()1,1(
0

max),(,

djiF
djiF

yxsjiF
jiF ji

Compared to equation (1), the term 0 is added to the maximum. As
a consequence of this, F(i,0) and F(0,j) should be set to 0’s instead
of –i*d and –j*d respectively.

2.2 Alignment with Affine Gap
A similar algorithm to the one presented for linear gap penalties
can be used for affine gap. However, multiple values of each pair
of residue (i,j) need to be computed instead of one. Figure 2
illustrates the case where three values need to be computed for
each residue pair [1]. These equations assume that an insertion is
not directly followed by a deletion (or vice versa). This can be
guaranteed for the optimal path if the lowest possible mismatch
score in the substitution matrix is greater than –d-e.

I G A xi
L G V yj

A I G A xi
G V yj -

G A xi - -
S L G V yj

+

+

+

=

)yx(s)1j,1i(I

),yx(s)1j,1i(I

),yx(s)1j,1i(F

max)j,i(F

j,iy

j,ix

j,i

--

--

--

,),1(
,),1(

max),(
ejiI

djiF
jiI

X
X ,)1,(

,)1,(
max),(

ejiI
djiF

jiI
y

y

-

Figure2. The case of affine gap penalties

Another algorithm is used in the case of affine gap penalties if the
lowest possible mismatch score in the substitution matrix is greater
than -2e. In it, there are two values for each residue pair instead of
three as shown below.

()

=

+

+
=

e)j,1i(I
,d)j,1i(F

,e)1j,i(I
,d)1j,i(F

max)j,i(I

3

)yx(s)1j,1i(I

),yx(s)1j,1i(F
max)j,i(F

j,i

j,i

--
--

--
--

--

--

3. HIGH PERFORMANCE BIOLOGICAL SEQUENCE
ANALYSIS: PREVIOUSE WORK

The computational complexity of the above dynamic programming
algorithms for pairwise sequence alignment is proportional to the
product of the lengths of the two sequences to be aligned i.e.
O(M*N). Scanning a database with hundreds of thousands of
sequences usually takes several hours on a PC [1][8]. Given the
exponential growth rate of biological sequence databases, this
problem is set to intensify.

In order to speed up sequence analysis algorithms, a number of
parallel architectures have been developed. Single Instruction
Multiple Data (SIMD) architectures based on a network of
programmable processors are among these solutions, and include

the MGAP [5], Kestrel [6] and Fuzion [7]. Although such
architectures are capable of considerable speed-ups compared to a
standard PC solution, they are often costly both in terms of design
and programming [10].

Other solutions have used special purpose hardware for the
implementation of parallel processing elements with the aim of
increasing processing density and achieving even higher speed-ups.
Such architectures also allow for systolic arrays to be implemented.
Instances of this family of architectures include BISP [14],
SAMBA [15] and BIOSCAN [16]. The advent of reconfigurable
hardware in the form of FPGAs makes such architectures even
more appealing. FPGAs after all are capable of providing
considerable speed-ups compared to general purpose processors
with the added convenience of reprogramability. An algorithm
implementation could hence be tuned to different needs both at
compile time and at run-time. Moreover, FPGAs are now riding the
process technology curve [17] which makes them even more
attractive a solution as a reliable high performance platform for
biocomputing [18][19]. For instance, a number of FPGA
implementations of the Smith-Waterman algorithm have been
reported in the literature recently [8][9][10]. However, none of
these implementations offers the same degree of parameterisability
as our implementation. The latter was designed using a high level
hardware language in the form of the ANSI-C based Handel-C
language [20], and achieved performance figures comparable to the
best results reported in the literature, if not better, as will be shown
in Section 5. This in itself is important as it means that higher level
hardware languages can be used to achieve high performance
implementations of computational biology applications, and hence
bridge the aforementioned gap between bioinformatics and
computational biology applications and high performance
hardware platforms.

4. OUR HARDWARE IMPLEMENTATION

Figure 3 presents a linear systolic array implementation for general
purpose pairwise sequence alignment based on the dynamic
programming algorithms presented in section 2 above. The linear
systolic array consists of a pipeline of basic processing elements
(PE) holding query sequence residues, whereas the subject
sequence is shifted systolically through the array (from the
database). A FIFO is used to store intermediate results for multi-
pass processing, which is only needed when the FPGA chip in
hand cannot fit all of the query sequence. Each PE holds one or
more residues of the query sequence and performs one elementary
calculation in one clock cycle thereby generating one alignment
matrix element F(i,j). However the calculation at PEi+1 depends on
the result from PEi, which means that each PE is one cycle behind
its predecessor. The full alignment of two sequences of lengths N
and M is hence achieved in M+N-1 cycles. Figure 4 illustrates the
execution of the recursive equation of the Smith Waterman
algorithm in such architecture. The elements on each diagonal line
can be computed in parallel in one clock cycle.

As stated above, multi-pass processing is needed when the
query sequence cannot fit into the FPGA chip in hand. This is
usually the case for real world databases. For instance, the number
of PEs that could be implemented on a Xilinx XC2V6000 Virtex-II
FPGA in the case of the Smith-Waterman Algorithm with affine
gap penalties is ~250. This represents the maximum query length
that can be fitted on the FPGA. Real world biological sequence
lengths, however, are often in the hundreds if not in the thousands.
In such cases, the algorithm in hand should be partitioned into
small alignment steps which are then mapped onto a fix size linear

I ­ 362

systolic array. This problem is well studied in the VLSI design
arena and involves proper scheduling of input and intermediate
data [21].

PEiPE1 PE2 PE

Subject sequence
xi (from database)

and Control

Max

FIFO

1
0

First?

Intermediate results, subject

sequence and Control

active_on(j)

Max(i-1,j)

F(i-1,j)

Max(i,j)

F(i,j)

active_on(j+1)if(active_on(j))
{
F(i,j)=maximum{F(i-1,j-1)+sbt(PEi_Residue,
Residue(j)), F(i,j-1)-d, F(i-1,j)-d, 0};
Max(i,j)=maximum{Max(i-1,j), F(i,j-1),Max(i,j-1)};
}
else
{
F(i,j)=0;
Max(i,j)=0;
}

Residue(j) Residue(j+1)

Query sequence yi

Figure3. Smith-Waterman sequence alignment algorithm on fixed
size systolic array architecture

H E A G A W G H E E

 0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0

A 0 0 0 5 0 5 0 0 0 0 0

W 0 0 0 0 2 0 20 12 4 0 0

H 0 10 2 0 0 0 12 18 22 14 6

E 0 2 16 8 0 0 4 10 18 28 20

A 0 0 8 21 13 5 0 4 10 20 27

E 0 0 6 13 18 12 4 0 4 16 26

PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10

t=0

t=1

t=2

t=6

t=7 t=8 t=15

Figure4. Illustration of the execution of the Smith-Waterman
example on the linear array processor of Figure 3

Based on the hardware architecture presented in Figure 3, we have
captured all of the variations of a generic pairwise sequence
alignment algorithm into a single FPGA core written in Handel-C
[20]. The final core that we have developed is prameterisable in
terms of the sequence symbol type e.g. DNA or Protein sequences,
query sequence, maximum subject sequence length, the match
score i.e. the score attributed to a symbol match depending on the
substitution matrix used, the gap penalty, linear or affine, the
matching task i.e. the alignment algorithm used to match
sequences, which could be global or local, and the match score
threshold, which is the match score threshold below which any
subject sequence is rejected. The core automatically infers the
necessary minimum processing wordlength based on the user-
supplied parameters and harnesses constant propagation. It has
been written without any FPGA-specific directives e.g. specific
resource inference or placement constraints, which makes it
directly retargetable across a variety of platforms including Xilinx
and Altera FPGAs.

5. PERFORMANCE AND EVALUATION

Celoxica’s DK4 suite was used to compile our core into EDIF,
whereas Xilinx ISE7.1 tool was used to generate the configuration
bitstreams for Xilinx FPGAs. A single PE in the case of the Smith-

Waterman algorithm for protein sequences, with linear gap penalty
and 16 bit processing wordlength, consumes ~30 slices on average
on Xilinx Virtex-II FPGAs, whereas an equivalent affine gap
penalty using the equations given in Figure 2, consumes ~85 slices.
An equivalent single PE with affine gap penalty using Equations
(3), however, consumes ~70 slices.
 Table 1 presents sample performance figures for instances of
our core assuming protein sequences and single pass
implementations. Affine2 and Affine3 refer to the affine gap
models given in Equations (3) and Figure 2 respectively. The
CUPS (or Cell Updates Per Second) performance is a common
performance measure used in computational biology. Its inverse
represents the equivalent time needed for a complete computation
of one entry of the alignment matrix, including all the comparisons,
additions and maximum computations. The peak CUPS of our
implementation is measured by multiplying the number of PEs and
the maximum clock frequency.

Number of
PEs

Gap
Penalty

Processing Word
length

Max
Speed
(MHz)

Peak
Performance
(CUPS x109)

Needleman-Wunsch
252 Linear 16 50.6 12.75

Smith-Waterman
100 Linear 16 43.5 4.35
252 Linear 10 47.7 12.02
100 Affine2 16 66.7 6.67
168 Affine2 16 47.6 8.00
100 Affine3 10 58.8 5.88
168 Affine3 16 40.0 6.72

Table1. Core performance for different instances of our core on a
Xilinx XC2V6000-4 FPGA

Table 2 presents sample results for instances of our core assuming
protein sequences and multi-pass implementations with k (the
number of passes, or folding factor) equal to 3 and 12 respectively.

Number of
PEs

Gap
Penalty

Processing Word
length

Clock
frequency

(MHz)

Peak
Performance

(GCUPS)
k=3

252 Linear 10 40.0 10.09
168 Affine2 10 62.5 10.50
168 Affine3 10 45.6 7.66

k=12
168 Linear 10 40.3 6.77
119 Affine3 10 50.4 5.99

Table2. Core performance for different instances of a multi-pass
implementation (i.e. k>1)

Equivalent software implementations written in C and running on a
Pentium-4 1.6 GHz achieve ~50 MegaCUPS performance, which
means that the above core outperforms equivalent software
implementation by two order of magnitudes (100:1+). Given the
relative cost of FPGAs compared to general purpose processors
(often in the order of 10:1) the above performance largely offsets
their cost, which shows that FPGAs could be an economical
implementation platform for biological sequence analysis
applications.

Compared to an implementation reported in [9] on a Xilinx
XC2VP30 FPGA, our core achieves twice the speed. It also
outperforms the implementation reported in [8] by 3:1. The

I ­ 363

Verilog-based implementation reported in [10], however, is the
closest to our core implementation as it is based on the same
hardware architecture. Compared to it, our core performs almost as
well despite the fact that we have not introduced any placement
constraints. This is a testament to the Handel-C language as well as
the corresponding synthesis tool.

Moreover, none of the above implementations offer the same
degree of parameterisation as our core. Indeed, the implementation
reported in [8] only supports the Smith-Waterman algorithm with
linear gap penalty, whereas the implementation reported in [9] does
not address the problem of partitioning/mapping. The
implementation in [10] supports both partitioning/mapping and
affine gap penalties. However, its affine gap model is based on the
equations given in Figure 2 only, and hence does not take
advantage of the hardware optimisations introduced by Equations
(3).

6. CONCLUSION

In this paper, we have presented the design and implementation of
a highly parameterised core for FPGA-based pairwise biological
sequence alignment. The core is parameterised in terms of the
sequence symbol type, the sequence lengths, the match score, the
gap penalty and the matching task. It implements the algorithm in
hand using a pipeline of basic processing elements, with a number
of built-in hardware optimisations. These include automatic
minimum wordlength inference and compile-time constant
propagation. The core results in high performance FPGA
implementations which outperform equivalent desktop-based
software implementations by two order-of magnitudes. This shows
that FPGAs could offer a relatively low cost high performance
implementation platform for biological sequence alignment
algorithms.

The core has been captured in the Handel-C language which
proved very convenient in describing scalable and parameterised
hardware architectures, with a relatively lower learning curve
compared to other hardware description languages.

The work presented in this paper is part of a bigger effort by the
authors which aims to harness the computational performance and
reprogramability features of FPGAs in the field of Bioinformatics
and Computational Biology. Future work includes the
implementation of sub-optimal sequence alignment algorithms
including the BLAST algorithm on FPGAs, as well as the use of
Hidden Markov Models for biological sequence analysis.

7. REFERENCES

[1] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G.,
‘Biological Sequence Analysis: Probabilistic Models for
Proteins and Nucleic Acids’, Cambridge University Press,
Cambridge UK, 1998

[2] Altschul, S. F., Gish, W., Miller, W., Myers, E.W. and
Lipman, D.J. ‘Basic Local Alignment Search Tool’, Journal of
Molecular Biology, 215, pp. 403-410, 1990.

[3] Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J.,
Zhang, Z., Miller, W., and Lipman, D. J. ‘Gapped BLAST and
PSI-BLAST: a new generation of protein database search
programs’, Nucleic Acid Research, Oxford Journals, 25(17),
pp. 3389-3402, 1997.

[4] Pearson, W.R.: Comparison of methods for searching protein
sequence databases, Protein Science 4 (6) (1995) 1145-1160

[5] Borah, M., Bajwa, R.S., Hannenhalli, S., and Irwin, M.J. ‘A
SIMD solution to the sequence comparison problem on the
MGAP’, ASAP’94 Proceedings, IEEE Computer Science, pp.
144-160, 1994

[6] Dahle, D., Grate L., Rice, E., and Hughey, R. ‘The UCSC
Kestrel general purpose parallel processor’, Proceedings of
the International Conference on Parallel and Distributed
Processing Techniques and Applications, pp. 1243-1249,
1999

[7] Schmidt, B., Schröder, H., and Schimmler, M ‘Massively
Parallel Solutions for Molecular Sequence Analysis’,
Proceedings of the 1st IEEE International Workshop on High
Performance Computational Biology, pp. 186-193, 2002.

[8] Yamaguchi, Y., Maruyama, T., and Konagaya, A. 'High
Speed Homology Search with FPGAs', Proceedings of the
Pacific Symposium on Biocomputing, pp.271-282, 2002.

[9] VanCourt, T. and Herbordt, M. C. 'Families of FPGA-Based
Algorithms for Approximate String Matching', Proceedings of
Application-Specific Systems, Architectures, and Processors,
ASAP’04, pp. 354-364, 2004

[10] Oliver, T., Schmidt, B. and Maskell, D. 'Hyper customized
processors for bio-sequence database scanning on FPGAs',
Proceedings of the 2005 ACM/SIGDA 13th international
symposium on Field-programmable gate arrays

[11] Harrison G. A., Tanner, J. M., Pilbeam D. R., and Baker, P. T.
'Human Biology: An introduction to human evolution,
variation, growth, and adaptability', Oxford Science
Publications, 1988

[12] Needleman, S. and Wunsch, C. ‘A general method applicable
to the search for similarities in the amino acid sequence of
two sequences’ Journal of Molecular Biology, 48(3), pp.443-
453, 1970

[13] Smith, T.F. and Waterman, M.S. Identification of common
molecular subsequences. J. Mol. Biol., 147, pp.195-197, 1981

[14] Chow, E., Hunkapiller, T., Peterson, J., Waterman, M.S.
‘Biological Information Signal Processor’, Proceedings of
Application-Specific Systems, Architectures, and Processors,
ASAP’91, pp. 144-160, 1991.

[15] Guerdoux-Jamet, P., Lavenier, D. ‘SAMBA: hardware
accelerator for biological sequence comparison’, Computer
Applications in Biosciences, CABIOS, 12 (6), pp. 609-615,
1997.

[16] Singh, R.K. et al. ‘BIOSCAN: a network sharable
computational resource for searching biosequence
databases’, Computer Applications in Biosciences, CABIOS,
12(3), pp. 191-196, 1996.

[17] Butts, M. All chips will be reconfigurable, Tutorial, 13th
International Conference on Field Programmable Logic and
Applications, September 2003

[18] Hoang, D.T. ‘Searching genetic databases on Splash 2’, in
Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines, pp. 185-191, 1993.

[19] TimeLogic Corporation, ‘Decypher Scalable, High
Performance Biocomputing Solutions’,
http://www.timelogic.com/

[20] The Handel-C Language Reference Manual, Celoxica Plc,
http://www.celoxica.com

[21] Kung, S. Y. ‘VLSI Array Processors’, Prentice-Hall, 1988

I ­ 364

