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ABSTRACT

Recent advances in high throughput microarray data have en-
abled the learning of the structure and operation of gene regu-
latory networks. This paper proposes a novel approach for re-
construction of gene regulatory networks based on the poste-
rior probabilities of gene regulations. Built within the frame-
work of Bayesian statistics and exploiting ef cient computa-
tional Monte Carlo techniques, the proposed approach pre-
vents the dichotomy of classifying gene interactions as either
being connected or disconnected, and thereby it reduces sig-
ni cantly the inference errors. Simulation results corroborate
the superior performance of the proposed approach relative to
the existing state-of-the-art algorithms.
Index Terms— Monte Carlo Methods, Genetics, Biological

Systems

1. INTRODUCTION

Currently, one of the most important research problems in
molecular biology and bioinformatics consists of nding out
the mechanisms that lie at the basis of gene regulatory net-
works. The importance of gene regulatory networks is due to
their fundamental role in the control and operation of all the
processes taking place in the living cell. Therefore, learning
the structure and operation of gene regulatory networks opens
up the possibility for understanding and controlling the func-
tioning of organisms at the molecular level, and for designing
intelligent therapies and drugs.
Gene regulatory networks have been employed to model

the multivariate gene interactions in systems biology. Recent
years have witnessed a number of different frameworks for
gene regulatory network modeling, ranging from ne-scale
modeling of biological interactions at the molecular level (us-
ing partial differential equations and stochastic equations) to
large scale modeling at the gene and protein-level (Boolean
and probabilistic Boolean networks, and (dynamic) Bayesian
networks) [1] - [6]. The small scale modeling techniques are
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used to obtain a detailed biochemical description of molec-
ular interactions and are in general very computational de-
manding. On the other side, the large scale models provide
a global view of the interactions among the constituent el-
ements of gene regulatory networks and are generally rep-
resented in terms of graphs. For example, gene regulatory
networks can account for the rate at which genes, i.e., DNA
segments, are transcribed into mRNAwith the involvement of
other genes, which can be either activators or repressors.

To obtain a correct description of the interactions between
genes, it is necessary to design metrics for assessing not only
the direct connectivity but also the regulating orientations.
There are two types of DNA microarray data sets: time se-
ries (or time dependent) and time independent (also called
steady state or single point time series) data sets. In general,
the time independent gene expression pro les are capable of
recovering steady state attractors, but fail to recover the direct
and oriented (temporal regulating) relationships. On the other
side, time series data sets can improve the inference greatly
in contrast to time independent data sets [7]. However, the
formidable cost is one major factor in collecting time series
data. Recent statistics show that about 70% of published data
are time independent data [8]. Therefore, the steady state
analysis is highly valuable despite the dif culty of making
accurate inference of temporal relationships.

This paper proposes a Bayesian approach to analyze the
steady state data and establishes a con dence measure of gene
interactions. The proposed scheme possesses ve key fea-
tures which make it different from the existing algorithms.
First, most of the current schemes infer a unique genetic net-
work represented by a graph which best ts the observed data
in a certain metric, while the proposed approach determines
the posterior probabilities for all gene-pair interactions and
avoids to make a dichotomy decision, i.e., to classify each
gene interaction as either being connected or disconnected.
The proposed gene reconstruction approach can be easily trans-
formed into a dichotomy scheme by only preserving the highly
probable gene interactions. Second, the underlying structural
model is assumed to be a directed cyclic graph, which al-
lows cycles (feedback loops) and directed acyclic graphs are
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treated as special cases. Third, the proposed approach as-
sumes continuous-valued variables, and this prevents the in-
formation loss incurred by data quantization. This represents
an extension of the discrete-valued Bayesian networks [9, 10].
Fourth, the proposed connectivity score is oriented and has
a very clear meaning, in the sense of posterior probabilities,
while the existing scores based on the mutual information
[11] are vague and lack orientation information. Fifth, in the
present approach the system kinetics can be assumed to be
nonlinear, while linear models are commonly utilized for the
purpose of simpli cation [12]. The proposed scheme estab-
lishes a general framework whose components can be cus-
tomized to t the nature of the underlying biological system.

2. SYSTEM FORMULATION

Genetic regulatory networks can be represented by a parame-
terized graph (G,Θ), where G and Θ stand for the graph
structure and parameter set, respectively. The graph structure
qualitatively explains the direct gene interactions, while the
parameter set quantitatively describes the system kinetics.

2.1. Structural Model

The graph G(V,E) is employed to map gene interactions
at transcriptional level, where V denotes the set of vertices
(genes) and E stands for the set of edges (regulation rela-
tionships). If gene X regulates gene Y , graphically such a
relation is represented in terms of an oriented edge X → Y ,
where X is a parent of Y and Y is considered a child of X .
All genes that present incidence edges with geneX represent
the set of parent genes of X , and are compactly denoted in
terms of the notation ΠX . If two genes X and Y interact
with each other but the regulation orientation can not be de-
termined, a disoriented edge is laid between the two genes (as
X−Y ). A sequence of consecutive oriented edges represents
a directed path. If there is no directed path which starts and
ends at the same vertex, in other words the graph contains
no loops, the graph is called a directed acyclic graph (DAG).
DAGs lie at the basis of Bayesian networks, which are com-
monly employed to model causal relationships.
General directed graphs (with possibly cycles) will serve

as our structural model since they are consistent with the fea-
tures exhibited by biological systems, in which loops account
for system redundancy and stability. Given the graph struc-
ture G, the parent set ΠX is speci ed for any gene X . Next
we discuss the system kinetics parameters de ned inΘ.

2.2. System Kinetics

The system kinetics represents the dynamics that governs the
gene’s mRNA concentrations in terms of gene-gene interac-
tions. It can be modeled by a set of differential equations
(DE). A simpli ed form is a set of linear DEs. However, we
accept the more complicated form which were employed by
[13, 14] since it is much more realistic and accounts for the

expression saturation. Given a gene X , its parent set ΠX can
be further partitioned into two disjoint subsets: the activator
set AX and the repressor set RX , i.e., ΠX = AX ∪ RX and
AX ∩ RX = φ. The kinetics of gene X can be explained by
the following differential equation:

dx

dt
= −λx +

δ +
∑|A|

i=1 aαi
i

1 +
∑|A|

i=1 aαi
i +

∑|R|
j=1 r

γj

j

(1)

where x is the concentration of gene X’s product, namely,
mRNA. The change rate of gene X is controlled by its acti-
vating and repressing parents, denoted individually by ai ∈ A
and rj ∈ R. α and γ serve as the regulating factors cor-
responding to each activator and repressor. α and γ assume
positive values, and hence can be modeled by Gamma distrib-
ution with shape and scale parameters (κ, β). λ stands for the
gene degradation rate and the time scale can be properly cho-
sen in order to normalize λ = 1. δ represents the expression
baseline rate, i.e., the expression rate when there is neither ac-
tivator nor repressor regulating the target gene X . Suppose y
represents the observation of x, then y has the form y = x+ε,
where ε incorporates all sources of noise and is modeled by a
Gaussian random variable with mean and variance (0, σ2).
In general, biological systems always converge to some

steady states. In a steady state, all genes stay in equilibrium
and do not change their expressions. By setting dx/dt = 0
and λ = 1, the observation y of the steady-state gene expres-
sion for gene X can be expressed as:

y =
δ +

∑|A|
i=1 aαi

i

1 +
∑|A|

i=1 aαi
i +

∑|R|
j=1 r

γj

j

+ ε (2)

Given a parent structure ΠX for gene X , the parameters
in ΘX can be summarized as follows:
1) For each parent π ∈ ΠX , a binary variable is demanded to
specify whether the parent is an activator or repressor. That is
1AX

(π), where 1 is the indicator function and it assumes the
value 1 when π ∈ AX , and 0 otherwise. It can be modeled by
a Bernoulli variable with known success probability ρ.
2) For each activator a ∈ AX and repressor r ∈ RX , it is
assumed that the regulating factors α, γ ∼ Gamma(κ, β),
where κ, β are known.
3) The baseline parameter δ is usually known.
4) The noise ε ∼ N(0, σ2), where σ2 can be set to a speci c
value or estimated.
It is worth to note that the choice of the nonlinear equation

and parameter priors does not in uence the ow of analysis.
Our scheme stands for a particular framework and the detailed
parameters can be easily customized to other scenarios.

3. INFERENCE METHOD

Consider a system composed of n genes {X1, X2, · · · , Xn},
and assume that m observations of expression vector are ob-
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tained and stored in matrix Dn×m. Next, we develop a com-
putational approach to establish the posterior probability of
the regulation Xi → Xj , i.e., the probability of the existence
of the edge eij , which is represented by p(eij |D). This poste-
rior can be obtained through integrating over the whole parent
gene set and parameter space for geneXj :

p(eij |D) =
∑
Πj

∫
Θj

p(eij ,Πj ,Θj |D)dΘj

=
∑
Πj

∫
Θj

1Πj (i)p(Πj , Θj |D)dΘj (3)

Applying Bayes theorem, p(Πj , Θj |D) can be expressed as

p(Πj , Θj |D) =
p(D|Πj ,Θj)p(Πj , Θj)

p(D)

=
p(D|Πj , Θj)p(Πj ,Θj)∑

Πj

∫
Θj

p(D|Πj , Θj)p(Πj ,Θj)dΘj
(4)

=
p(Dj |Dj̄ , Πj , Θj)p(Πj ,Θj)∑

Πj

∫
Θj

p(Dj |Dj̄ , Πj , Θj)p(Πj ,Θj)dΘj

where Dj denotes the observations of gene Xj , and Dj̄ rep-
resents the collection of all the observations pertaining to all
genes excluding those of gene Xj . p(Πj ,Θj) denotes the
probability density of the high-dimensional parental model
which is a subgraph of the whole network, and p(Dj |Dj̄ ,Πj , Θj)
stands for the data likelihood given the parental values and the
graphical model. It is a Gaussian distribution with mean de-
termined by the rst part of equation (2) and known variance.
By plugging (4) into (3), it can be inferred that

p(eij |D) =

�
Πj

�
Θj

1Πj (i)p(Dj |Dj̄ , Πj , Θj)p(Πj , Θj)dΘj

�
Πj

�
Θj

p(Dj |Dj̄ , Πj , Θj)p(Πj , Θj)dΘj
(5)

The integrations at the numerator and denominator of (5)
can not be generally performed in a closed-form expression.
However, the Monte Carlo methods enable to numerically
evaluate the posterior probabilities. We can generate Monte
Carlo samples based on the model probability density p(Π, Θ)
and the integration can be obtained by averaging over these
samples. Then the posterior probabilities can be estimated by

p(eij |D) ≈
∑

Πj ,Θj
1Πj (i)p(Dj |Dj̄ , Πj ,Θj)∑

Πj ,Θj
p(Dj |Dj̄ , Πj , Θj)

(6)

Assuming that the selection of a parent as an activator
is performed in an independent manner, and that the selec-
tion of the regulation factor value is also performed indepen-
dently, the model probability density p(Π,Θ) can be further
expanded by using the chain rule:

p(Π, Θ) = p(Θ|Π)p(Π)

=
|A|∏
i=1

[ρp(αi)]
|R|∏
j=1

[(1 − ρ)p(γj)]p(Π) (7)

Algorithm 1 Inference of Connectivity Signi cance
1: Input gene expression data set Dn×m with n genes and

m samples;
2: Initialize n,L = 01×n,C = 0n×n;
3: for k = 1 toM do
4: Randomly create a directed graph and the adjacency

matrix J ;
5: for i = 1 to n do
6: For gene i’s parents speci ed in J(:, i), randomly

assign them to be activators or repressors;
7: For each parent, randomly create their regulation

factor α or γ;
8: l ⇐ likelihood(Di|Dī, Πi,Θi);
9: for j = 1 to n do
10: if j ∈ Πi then
11: Cji = Cji + l;
12: end if
13: end for
14: Li = Li + l;
15: end for
16: end for
17: ∀i, j, Cji = Cji/Li;
18: return C.

Equation (7) conveys the idea that the random samples of
graphical models can be sequentially created and processed.
First the network structure is created, then each parent is ran-
domly assigned to represent an activator or repressor, and -
nally regulation factors are generated. Instead of separately
creating parents for each node in a randomway, random graphs
are generated. The motivation is that generally we have some
prior knowledge about the underlying graph, e.g., the sparsity
of the graph, the statistic of the edges, whether the underly-
ing graph is acyclic or not, etc. Such an approach enables to
utilize informative priors for graphs rather than parental struc-
tures. In order to create multi-dimensional graphical models,
we employ Markov chain Monte Carlo (MCMC) and sequen-
tial importance sampling (SIS) techniques. However, the de-
tails of this construction are omitted due to the space limita-
tions. Therefore, our computational procedure can be brie y
formulated in terms of the Algorithm 1, where the conven-
tions from Matlab were used to write the pseudo-code, the
output entryCij stands for p(eij |D), andM denotes the num-
ber of Monte Carlo iterations.

4. SIMULATION RESULTS

The performance of the proposed algorithm is next compared
with one of the most representative algorithms available in the
literature, namely the relevance network (RN) method [11].
In RN, the signi cance of gene interactions is measured in
terms of the mutual information between the gene expres-
sions. Hence, the RN is an undirected cyclic graph.
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An arti cial network which contains 10 vertices and 18
oriented edges was rst created. Different numbers of steady-
state samples were generated based on the adopted model.
For both the RN method and the proposed scheme, the top
18 edges with highest scores (mutual information for RN and
posterior probability for proposed scheme) were preserved.
As a performance metric, the Hamming distance is used to
compare the adjacency matrix of the inferred network with
that of the original arti cial network. Since RN is disori-
ented, we have to disregard the orientation information of the
network identi ed by the proposed scheme.
Figure 1(A) compares the performance of RN method and

the proposed scheme for different sample sizes. It is obvious
that the proposed method provides much better inference ac-
curacy. For small scale arti cial networks, when the sample
size is suf ciently large, the increase of sample size does not
improve the performance of RN method. This is because the
estimation of mutual information has been suf ciently accu-
rate. The shortcoming of mutual information is apparent, and
therefore it is not an appropriate metric for establishing the
direct connectivity between genes. Figure 1(B) illustrates the
impact of different number of Monte Carlo iterations on Ham-
ming metric. More iterations surely improve the performance
of the proposed scheme, while a mild number of iterations al-
ready guarantees the proposed scheme to outperform the RN
method. When considering the orientation of the edges, we
nd that more than 90% of the inferred edges are correctly
oriented by the proposed approach.
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