
PROTEIN FOLD RECOGNITION USING RESIDUE-BASED ALIGNMENTS OF SEQUENCE
AND SECONDARY STRUCTURE

Zafer Aydin∗, Hakan Erdogan∗∗, and Yucel Altunbasak∗

∗Center for Signal and Image Processing, ∗∗Faculty of Engineering and Natural Sciences
Centergy 5th oor, Georgia Institute of Technology Room 1097, Sabanci University

Atlanta, GA 30332-0250 Orhanli, Tuzla, 34956 Istanbul, Turkey
E-mail:{aydinz,yucel}@ece.gatech.edu E-mail: haerdogan@sabanciuniv.edu

ABSTRACT

Protein structure prediction aims to determine the three-dimensional
structure of proteins form their amino acid sequences. When a pro-
tein does not have similarity (homology) to any known fold, thread-
ing or fold recognition methods are used to predict structure. Fold
recognition methods frequently employ secondary structure, solvent
accessibility, and evolutionary information to enhance the accuracy
and the quality of the predictions.

In this paper, we present a residue based alignment method as
an alternative to the state-of-the-art SSEA method, originally intro-
duced by Przytycka et al. [1], and further modi ed by McGuf n
et al. [2]. We introduce a residue-based score function, which can
incorporate amino acid similarity matrices such as BLOSUM into
secondary structure similarity scoring and compute joint alignments.
We show that the power of the SSEA method comes from the length
normalization instead of the element alignment technique and simi-
lar performance can be achieved using residue-based alignments of
secondary structures by optimizing gap costs. In simulations with
the two benchmark datasets, our method performs slightly better
than the SSEA in terms of the fold recognition accuracy. When the
secondary structure similarity matrix is combined with the amino
acid based BLOSUM30 matrix, the accuracy of our method im-
proves further (4% for the McGuf n set and 10% for the Ding and
Dubchak set). The availability of aligning the amino acid and sec-
ondary structure sequences in a joint manner offers a better starting
point for more elaborate techniques that employ pro le-pro le align-
ments and machine learning methods [3, 4].

Index Terms— protein fold recognition, secondary structure
alignment, amino acid alignment, score normalization, gap cost.

1. INTRODUCTION

Protein structure prediction aims to determine the three-dimensional
structure of proteins form their amino acid sequences. When a pro-
tein shows signi cant sequence similarity to other proteins with known
structures, comparative modeling techniques can be used to deter-
mine the three-dimensional structure with reasonable accuracy. On
the other hand, if there is little similarity (homology) to any known
fold, threading or fold recognition methods are used to predict struc-
ture.

Protein threading or fold recognition refers to a class of compu-
tational methods for predicting the structure of a protein from the
amino acid sequence. The basic idea is that the target sequence
(the protein sequence for which the structure is being predicted) is
threaded through the backbone structures of a collection of template
proteins (known as the fold library) and a goodness of t score cal-

culated for each sequence-structure alignment. Protein fold recog-
nition problem can be stated as the problem of assigning a protein
of unknown structure (target) to one of the known fold classes (tem-
plates) as de ned in the SCOP or CATH classi cation standards.
Fold recognition methods can be broadly divided into two types: (1)
methods that derive a 1-D pro le for each structure in the fold li-
brary and align the target sequence to these pro les; (2) methods
that consider the full 3-D structure of the protein template. A sim-
ple example of a pro le representation would be to take each amino
acid in the structure and simply label it according to whether it is
buried in the core of the protein or exposed on the surface. More
elaborate pro les might take into account the local secondary struc-
ture (e.g. whether the amino acid is part of an alpha helix) or even
evolutionary information (how conserved the amino acid is). In the
3-D representation, the structure is modelled as a set of inter-atomic
distances i.e., the distances are calculated between some or all of the
atom pairs in the structure. This is a much richer and far more ex-
ible description of the structure, but is much harder to use in calcu-
lating an alignment. Also note that, methods in the second category
greatly bene t from the pro le-based approaches.

Recent approaches in fold recognition follow two major direc-
tions, namely machine learning methods (neural networks and sup-
port vector machines) and alignment methods. In this paper, we
present a residue based alignment method as an alternative to the
state-of-the-art SSEA method, originally introduced by Przytycka et
al. [1], and further modi ed by McGuf n et al. [2]. We introduce a
score function, which allows us to incorporate amino acid similarity
scores such as BLOSUM into secondary structure alignments, which
is not possible with the SSEA method. By combining the amino acid
and the secondary structure similarity matrices, it is possible to com-
pute joint alignments of sequence and secondary structure.

2. SECONDARY STRUCTURE ELEMENT ALIGNMENT
(SSEA)

Secondary structure element alignment (SSEA) was rst introduced
by Przytycka et al. [1], which is based on the alignment of secondary
structure segments instead of the residue pairs. McGuf n et al. [2]
then adopted the idea and compared a slightly modi ed SSEA to
other alignment methods. The result was that SSEA performed the
best of all tested sequence and secondary structure alignment meth-
ods in predicting the fold class of a given protein. The pairwise
alignment procedure described by McGuf n et al. [2] can be sum-
marized as follows:
1. Represent each sequence as the sequence of secondary struc-
ture elements and annotate the length of the elements. Dis-
card leading and trailing coils. For instance, the secondary

I ­ 3491­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007



structure string LLLLLHHHHHHLLEEELLLHHHHHLLL is
represented by: (HLELH, 62335), where HLELH is the sec-
ondary structure element representation and the numbers 6,
2, 3, 3, 5 code for the length information of each secondary
structure element (or segment).

2. Align the two element sequences using dynamic program-
ming with zero gap costs. The scoring function is de ned as
follows. Matching elements (H-H, E-E, and L-L) are scored
by the minimum length of the aligned elements, H-L and E-
L mismatches are scored by half the minimum length, and
nally H-E mismatch scores 0. The total alignment score
(rawscore) is the sum of all aligned element-pair scores.

3. Normalize the alignment score by the mean trimmed sequence
length (sequence length minus initial and nal coil regions)
of the two proteins. If l1, and l2 denote the lengths of the
trimmed secondary structure sequences, the normalized score
is computed as 2 rawscore

l1+l2
. Here, the lengths are obtained

over the sequences in the original form, instead of the element
representation. For instance, the lengths of the two element
sequences (HLELH, 62335) and (HLHLH, 51796), become
l1 = 19, and l2 = 28, respectively.

A more detailed description of the SSEA method, its possible vari-
ants and other alignment techniques used in the McGuf n evaluation
can be found in http://www.cs.ucl.ac.uk/staff/L.McGuf n/methods.html.

3. RESIDUE-BASED ALIGNMENTS OF SEQUENCE AND
SECONDARY STRUCTURE

In residue-based alignments of two secondary structure sequences,
one is concerned with nding the optimum pairing of the secondary
structure symbols instead of the secondary structure elements or seg-
ments. Therefore it is necessary to rst de ne the similarity matrix to
score the matches and mismatches for a pair of secondary structure
symbols.

3.1. Secondary Structure Similarity Matrix

In our method, we used the similarity matrix shown in Table 1, which
is introduced in Wallqvist et al. [5]. This matrix is obtained from a

Mss H E L
H 2 -15 -4
E -15 4 -4
L -4 -4 2

Table 1. Secondary structure similarity matrix Mss, obtained from
the 3D ali database which is used to score the alignment of two sec-
ondary structure symbols.

set of representative 3-D structure alignments provided in the 3D ali
database and re ects the occurrence propensities of secondary struc-
ture symbols paired in the alignments, i.e. how often a helical residue
is paired with another helical residue. Here, the matrix elements
M ij

ss, are de ned by

M ij
ss = 2log2(

Pij

P ex
ij

), (1)

where Pij is the probability of nding the paired structural elements
i and j in an alignment of two secondary structure sequences, and
P ex

ij is the probability of nding the same pair in an alignment of two

random sequences. Therefore, the matrix elements provide a mea-
sure of how often a pairing occurs relative to the random case, where
a positive value indicates a favorable score. For a more detailed de-
scription of how the probability terms Pij , P ex

ij , and the similarity
matrix is computed see Wallqvist et al. [5].

3.2. Gap Scoring

Having de ned the similarity matrix, we will proceed with the gap
scoring function. When a secondary structure symbol (H, E, or L) in
one sequence does not have any counterpart (or match) in the other
sequence, then that symbol is aligned to a gap symbol ’-’. Allowing
gap regions in an alignment enables us to better represent the sim-
ilarity between the aligned sequences in a biologically meaningful
manner. In the state-of-the-art gap scoring, opening a gap is penal-
ized more than extending it. For example in “af ne gap scoring”,
which is one of the most widely used gap scoring techniques, start-
ing a gap is scored by parameter d, and extending a gap region is
scored by e, where d typically takes values around -10 or -12 and e
is set to -1 or -2.

In this paper, we implemented an af ne gap scoring, where the
parameters d and e are optimized by searching for the values that
maximize the fold recognition accuracy (see Section 4 for details).

3.3. Score Function with Amino Acid Similarity Matrix

The scoring function to align a pair of secondary structure sequences
A and B can be de ned as:

φ(A, B) =

mab∑

k=1

Mak,bk
ss + Nogo + Nege, (2)

whereMss corresponds to the secondary structure similarity matrix,
mab is the number of paired elements in the alignment between se-
quencesA andB, and ak, bk denote the kth secondary structure pair
of the aligned sequences. In this equation, the number of gap open-
ingsNo is multiplied by the gap opening penalty, go, and the number
of gap extensions Ne is multiplied by the gap extension penalty ge.

The scoring function de ned in Eq. 2 can be extended to incor-
porate the amino acid similarity matrix as follows:

φαβ(A, B) =

mab∑

k=1

(αMck,dk
aa + βMak,bk

ss ) + Nogo + Nege, (3)

whereMaa denote the amino acid similarity matrix (BLOSUM50 or
BLOSUM30), ck, dk represent the kth amino acid pair of the aligned
sequences, andα, β determine the weighted importance of the amino
acid and secondary structure similarity scores, respectively.

3.4. Content Dependent Score Function

Typically, α and β are set to 0.5 so that equal weights are assigned to
the amino acid and secondary structure similarity scores. In a more
realistic setting, one can consider the fact that secondary structures
are obtained as predictions and most of the prediction algorithms as-
sign a con dence value to each position. Therefore the weights α,
and β could be adjusted in such a way that higher weight is given to
the secondary structure similarity score, Mak,bk

ss , when the predic-
tion con dence is high for ak and bk and vice versa. To model this,
Eq. 3 can be rephrased as follows:

φαβ(A, B) =

mab∑

k=1

(αA,BMck,ck
aa + βA,BMak,bk

ss ) + G, (4)
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where αA,B and βA,B are the content dependent weights and G is
the gap penalty, which is equal toNogo+Nege. To investigate the ef-
fect of this approach, we implemented several functions for choosing
αA,B and βA,B . However, we did not observe any improvement in
the fold recognition accuracy when the weights are adjusted accord-
ing to the prediction con dence values (data not shown). Therefore,
we have concluded that the con dence values of a single secondary
structure prediction method is not informative when applied to fold
recognition problem, and the best performance is achieved by choos-
ing αA,B = βA,B = c, where c is a constant. An interesting avenue
could be to utilize the prediction con dence values of multiple pre-
dictors in an attempt to improve the secondary structure prediction
accuracy and thus the fold recognition performance.

3.5. Score Normalization

After computing the raw score of an alignment, it is useful to nor-
malize it to a statistically meaningful range. This procedure helps
to assign a statistical signi cance to an alignment score by estimat-
ing the likelihood of that score to arise by chance. In this paper, we
considered using two normalization procedures: (1) Conversion to
E-values; (2) Normalization by the average length of the aligned se-
quences as described in Section 2. The E-value of an alignment is
computed as E = Kmne−λS , where K and λ are constant para-
meters,m, n are the sequence lengths and S is the alignment score.
Empirical estimates of K and λ at different gap costs is given in
Altschul and Gish [6]. Here, we simply chose values from Tables
V and VI of Altschul and Gish [6] corresponding to the gap scores
being used.

3.6. Computation of the Best Scoring Alignment

Given a scoring function, the computation of the optimum (best scor-
ing) alignment can be found using the dynamic programming tech-
niques. In this paper, we used the Smith-Waterman algorithm, to
compute the local alignment between a pair of sequences. More de-
tails on the alignment algorithms and dynamic programming can be
found in Durbin et al. [7].

4. RESULTS

In our simulations, we used two benchmark datasets. The rst one
is introduced by McGuf n and Jones [8] and is a “dif cult” set. It
contains 542 non-redundant domains based on CATH [9] version 1.7
and is divided into a subset of 252 known folds which have at least
one other match in the set, and 290 unique folds, i.e., domains which
have folds unique with respect to this set. In order to evaluate the
performance of our method, we selected the set of known folds as
targets and the complete set as templates, excluding identical hits.
Then we aligned each target to all templates, and compared the fold
classes of the maximum scoring target-template pair. If both be-
longed to the same fold class, then this alignment is counted as a
successful prediction. In this evaluation, the fold class assignments
are taken from CATH V3.0. The second set is provided by Ding
and Dubchak [10] and is relatively easy. It contains 386 SCOP do-
mains in 27 SCOP folds. This set is known to contain distant ho-
mologues [11], a fact that leads to higher recognition rate for such
target-template pairs. To evaluate the performance of our method on
this benchmark set, we performed all-against-all alignments (leave-
one-out test), in which a domain is chosen from the set as the target
and is aligned to the remaining domains, which form the template

library. Then the alignments are sorted and fold classes of the max-
imum scoring target-template pair are compared. This process is
repeated until all domains are chosen as targets and aligned to the
remaining set of templates.

In all simulations, we used sensitivity as the performance mea-
sure, which is de ned as:

Q =
Nc

N
, (5)

whereNc is the number of targets with correctly predicted fold classes,
and N is the total number of targets evaluated.

In simulations with score normalization and gap score optimiza-
tion, secondary structure assignments are taken from the PDB (Pro-
tein Data Bank, http://www.pdb.org). Note that, PDB uses a version
of the DSSP algorithm to assign secondary structure from atomic
coordinates of experimentally solved proteins. In simulations com-
paring the performance of our method to SSEA, and evaluating the
performance of amino acid and secondary structure alignments, sec-
ondary structures are predicted using PSIPRED version 2.4.

4.1. Score Normalization Techniques

In this section, we considered three alternatives for the score normal-
ization: (1) no normalization (raw scores); (2) normalization by the
average length; (3) normalization by converting to e-values. We per-
formed all-against-all alignments of secondary structure sequences
on the Ding and Dubchak set [10], where the secondary structure
assignments are taken from the PDB. Here, the score function in
Eq. 1 is used, with gap opening and gap extension penalties are set
to d = −12 and e = −2. In E-value conversion, the parameters K,
and λ are set to 0.09, and 0.3, respectively (see Table V in Altschul
and Gish [6]). Although these values are estimated for the BLO-
SUM62 matrix, we believe that the optimization of K and λ for
the SSSM matrix will not bring signi cant improvements. From the
results in Table 2, the average length normalization gives the best
results in predicting the fold class. Another interesting observation
is that when there is no normalization, the fold recognition accuracy
drops signi cantly. This indicates that the true power of the SSEA
method comes from the score normalization but not from the ele-
ment alignment technique. To further validate this hypothesis, we
performed the same simulations using the SSEA method (e-value
normalization is not de ned for SSEA). From the results shown in
Table 3, we concluded that the element alignment approach does not
produce satisfactory performance without score normalization. In
the following sections, we will show that for optimized values of d
and e, residue-based alignment approach performs comparably bet-
ter than the SSEA method.

Normalization Method Q(%)
Raw Scores 38.45
E-value 52.87

Average Length 59.12

Table 2. Comparison of score normalization methods for the
residue-based secondary structure alignments.

4.2. Gap Score Optimization

To nd the optimum values of the gap opening, and the gap extension
penalties, i.e., the parameters d, and e, we sampled a representative
set of values and chose the ones that maximize the fold recognition
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Normalization Method Q(%)
Raw Scores 10.47

Average Length 59.68

Table 3. The effect of average length normalization on the fold
recognition accuracy of the SSEA method.

accuracy. For the gap opening cost, we chose integer values from -8
to -3. For the gap extension cost, we considered values from -1.6 to -
0.2 with the increment set to 0.2. In addition to these values, we also
found it useful to evaluate the performance for d = −12, d = −10,
which are commonly used in sequence alignment methods.

We performed all-against-all alignments on the Ding and Dubchak
set [10], where the secondary structure assignments are taken from
the PDB. We have found that, the maximum fold recognition accu-
racy (Q(%) = 68.04) is achieved at multiple values of d (−6,−5,−4),
and at a single e value (e = −1.2).

4.3. SSEA and Residue-Based Alignments

In this section, we compared the fold recognition accuracies of our
method and the SSEA approach. Then, we evaluated the effect of
incorporating amino acid similarity matrix (BLOSUM30) into the
residue-based alignments of secondary structure. Tables 4, and 5
show the simulation results on the McGuf n, and Ding and Dubchak
sets, respectively. Here, RBSS refers to the residue-based align-
ments of secondary structure using the secondary structure similar-
ity matrix in Table 1. Secondary structures were predicted using the
PSIPRED v2.4. To serve as a reference point, we also computed
the alignments using true secondary structure assignments obtained
from the PDB. In simulations with the residue-based alignments, the
gap opening and gap extension parameters are set to d = −6, and
e = −1.2, respectively. Similar to the SSEA method, we discarded
the leading and trailing coils and aligned the trimmed sequences.

Method Q(%)
SSEA 26.98
RBSS 29.62

BLOSUM30+RBSS (α = 0.5, β = 0.5) 33.73
BLOSUM30+RBSS (True secondary structures) 35.31

Table 4. Fold recognition accuracy evaluated on the McGuf n set.

Method Q(%)
SSEA 60.47
RBSS 60.73

BLOSUM30+RBSS (α = 0.5, β = 0.5) 70.68
BLOSUM30+RBSS (True secondary structures) 75.39

Table 5. Fold recognition accuracy evaluated on the Ding and
Dubchak set.

From these results, the residue-based alignments of secondary struc-
tures performs comparable or better than the SSEA method. In addi-
tion, the incorporation of amino acid similarity scores such as BLO-
SUM30 brings signi cant improvements over the secondary struc-
ture alignments.

5. CONCLUSIONS

In this paper, we revisited the utilization of secondary structure align-
ments in fold recognition. We showed that the power of the state-
of-the-art SSEA method comes from score normalization instead of
the element alignment approach, and similar performance could be
achieved using residue-based alignments when proper score normal-
ization and gap scoring are applied. The residue-based nature of
the proposed method also allows us to incorporate amino acid sim-
ilarity matrices such as BLOSUM. The availability of aligning the
amino acid and secondary structure sequences in a joint manner of-
fers a better starting point for more elaborate techniques that employ
pro le-pro le alignments and machine learning methods [3, 4].
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