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ABSTRACT

In this paper, we propose group-biomarkers as an alternative
to the traditional single biomarkers used to date for the
detection of ovarian cancer. Group-biomarkers are a set of
genes that are used simultaneously for the diagnosis of early-
stage and/or recurrent cancer. We describe a procedure for
identifying such group-biomarkers from a data set of gene
expression levels corresponding to normal and diseased
ovarian tissue as well as tissue from other organs. The
procedure starts with a list of potential single biomarkers. It
then uses an order preserving biclustering step to identify
other genes that are co-regulated with the candidate single
biomarkers across the normal and diseased ovarian tissue
and tissue from other organ. We present a statistical
analysis that demonstrates that group-biomarkers have a
much better detection performance than single biomarkers as
exhibited by receiver operating characteristics curves.

Index Terms— Biclustering, biomarkers, DNA
microarray, ovarian cancer
1. INTRODUCTION

Each year in the United States, about 24,000 new cases of
ovarian cancer are diagnosed and 14,000 deaths are
attributed to it. Contributing to the poor prognosis is the lack
of symptoms in the early stages of the disease. More than
75% of diagnoses are made in stage III and IV, after distant
metastasis has occurred. The 5-year survival rate for women
diagnosed with late-stage disease is 25%, compared to more
than 90% for women diagnosed with stage 1 of the disease.
The well-known CA-125 test is useful for tracking patients
already diagnosed with ovarian cancer, but has not proven
sensitive enough to be used as an early diagnosis test [1].

In recent years, large-scale gene expression analyses have
been performed to identify differentially expressed genes in
ovarian carcinoma. See, e.g., [1] and the references cited
there in. A common goal of these studies was to identify
potential tumor markers for the diagnosis of early-stage
ovarian cancer, as well as to use these markers as targets for
improved therapy and treatment of the disease during all
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stages. These earlier studies compared the gene expression
profiles of tissues or cell lines derived from ovarian cancer
samples, normal ovaries, other normal samples, and other
types of tumors. The cumulative results of these gene
expression studies reveal more than 150 potentially up-
regulated genes that are associated with ovarian cancer.

So far, techniques for identifying potential biomarkers in
ovarian carcinoma and cancer studies in general, have
primarily focused on detecting single-biomarkers that is
single gene that can be used for early detection and/or
recurrent ovarian cancer. While these pioneering
approaches have proven to be successful in addressing
several challenges in ovarian cancer and cancer in general,
they exhibit high false positive rates. Here, we introduce and
develop a novel concept termed: group-biomarkers. Group-
biomarkers are a group of co-regulated genes that can be
jointly used for the diagnosis of early-stage and/or recurrent
ovarian cancer. The quest for group-biomarkers is motivated
by the fact that different groups of individuals exhibit
different patterns of cancer onset. It is therefore hoped that
group-biomarkers will identify the cancer onset pattern that
a particular individual is likely to experience and therefore
help select the most discriminative biomarker for the
corresponding pattern. Group-biomarkers have many
advantages over single-biomarkers. As we demonstrate in
this paper, they provide a more reliable early detection of
ovarian cancer. Furthermore, but they indicate what genes
may be involved in the early development of ovarian cancer
and how they interact with each other. As such, they also
provide a target for ovarian cancer therapy.

We present a procedure for identifying all group-
biomarkers from a given, properly selected set of gene
expression data. Our methodology is based on using the
ability of a modified biclustering technique combined with
sensitivity analysis of gene expression levels to identify all
potential single-biomarkers found by prior studies as well as
many more candidates that had been missed in the literature.
We then use an order preserving modified biclustering
technique to identify genes that are co-regulated with the
candidate single-biomarkers. Each set of genes produced by
this approach is a candidate group-biomarker that is then
validated using additional analysis such as chemical
analysis. Statistical analysis of group-biomarkers shows that
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they provide better early detection of ovarian cancer than
single-biomarkers.

The rest of this paper is organized as follows. In
paragraph 2, we present the data set used in this study. In
Paragraph 3, we perform the analysis of potential
biomarkers that can be used for early detection and/or
recurrent ovarian cancer. Finally, we conclude in paragraph
4.

2. MATERIALS

The gene expression data that we used in this study
corresponds to 44 normal ovaries, 10 borderline ovarian
cancer tissues, 17 serous papillary ovarian carcinoma
tumors, and 20 metastases of serous papillary ovarian
carcinoma to the omentum. For comparison purposes, we
have also used 21 others tissue sets that encompassed 372
different tissue samples: 25 normal adipose tissues, 4 normal
breast (from which adipose tissue was removed), 20 normal
cervix, 32 normal colon, 11 normal kidney, 12 normal liver,
24 normal lung, 45 normal myometrium, 9 normal omentum,
30 normal skeletal muscle, 17 normal skin, 15 normal small
intestine, 69 normal thymus, 9 tonsils with lymphoid
hyperplasia, 2 endometrial hyperplasia, 4 squamous cell
carcinoma of the cervix, 3 colon adenocarcinoma, 6
endometrial adenocarcinoma, 8 kidney cell carcinoma, 6
lung adenocarcinoma, 10 squamous carcinoma of the lung,
22 gall bladder with chronic inflammation. The tissues were
provided by the University of Minnesota Cancer Center’s
Tissue Procurement Facility. Bulk tumor and normal tissues
were identified, dissected, and snap-frozen in liquid nitrogen
within 15 to 30 minutes of resection from the patient. Tissue
sections were made from each sample, stained with
hematoxylin and eosin (H&E), and examined independently
by two pathologists to confirm the pathological state of each
sample. All tissue samples underwent stringent quality
control measures to verify the integrity of the RNA before
use in gene array experiments.

The gene expression was determined by Gene Logic Inc.
using Affymetrix HG_U954 arrays containing about ~12,626
genes. The gene expression matrix was normalized using
Affymetrix (M.A.S. 4.0.1), and the log-floor data transform
with a floor value of I was performed. Because of missing
values, 5 metastases of serous papillary ovarian carcinoma
tissues were removed, and about 74 genes were eliminated
because they all had missing values. Thus the final gene
expression matrix used for simulation contained: 44 normal
ovaries, 10 borderlines, 17 serous papillary ovarian
carcinoma tumors, and 15 metastases of serous papillary
ovarian carcinoma to the omentum, about 12626 genes
among which 12000 are known genes. The data was
organized in a /2626 x 86 matrix where the rows represents
the 12626 genes, the columns the 86 conditions among
which conditions 1 to 44 correspond to the 44 normal
ovaries, conditions 45 to 54 the 10 borderline, 55 to 71 to
the 17 serous papillary ovarian carcinoma, and conditions 72

to 86 to the 15 metastases of serous papillary ovarian
carcinoma to the omentum. The borderlines are classified
here as stage I of ovarian cancer and the other ones as late
stage II and stage III of ovarian cancer.

3. POTENTIAL BIOMARKERS IDENTIFICATION

As mentioned earlier, we propose to identify group-
biomarkers by starting from a list of single biomarkers and
using an order preserving biclustering approach to find
potential group-biomarkers. We describe each step of the
process in this section.

3.1. Single-Biomarkers Identification

In [5], we presented an exhaustive method for the
identification of all potential single-biomarkers. The paper
also makes several important contributions. It applies a
novel high-profile set of biclustering techniques recently
developed by Tewfik and Tchagang [2]-[3] combined with a
sensitivity analysis to the above unique and comprehensive
set of gene expression data generated by Gene Logic Inc.
from tissues collected at the University of Minnesota by
Skubitz et al [1]. Since the approach of [2]-[3] can find all
biclusters in a given set of data, the paper reproduces the
discoveries of prior studies and identifies several additional
more promising single-biomarkers candidates. More
significantly, unlike most prior studies, it identifies genes
that are down-regulated in ovarian carcinoma, indicating the
lack of a suppressor function.

By combining the biclustering technique of [2]-[3] with a
sensitivity analysis of the results by varying the thresholds
used for data quantization, in [5] we did identify 481 genes
upregulated in ovarian cancer tissues compared only to
normal ovarian tissue. This set included all 150 genes found
to be upregulated in ovarian cancer tissues in previous
studies [1]. After the filtering process, we identified 55
upregulated in ovarian cancer tissues compared to normal
ovarian tissue and the other 372 non-ovarian tissues. This set
included all 40 candidate single-biomarkers listed in [1].
Using the same methodology, we had also identified 127
genes downregulated in ovarian cancer tissues compared
only to normal ovarian tissue. We refer the reader to [5] for
more development.

3.2. Group-Biomarkers Identification

Our procedure for identifying group-biomarkers relies on
the observation that such sets of genes exhibit coherent
behavior across a sub-group of patients. By acting
simultaneously in a coherent manner, such genes could
trigger the onset cancer. To uncover such patterns from the
DNA microarray data, we treat each tissue as a separate
condition, and seek sets of genes that are coregulated with a
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potential single-biomarker across as many conditions or
tissues as possible. Since the ordering of the individual
tissue is immaterial, we use the order preserving biclustering
approach of [4] to find such sets of genes. The resulting
biclusters of group-biomarkers implicitly segment the human
population into non-overlapping groups that exhibit distinct
patterns of cancer onset or recurrence.

The Order Preserving Submatrix Problems (OPSM) was
introduced in [6] by Ben-Dor et al as a way of discovering
local structure in a gene expression data i.e: biclusters with
coherent evolutions. In [3]-[4], we also did develop a
biclustering technique with low complexity to address the
OPSM issue.

Typically, given a gene expression data matrix 4 = [a,,/,
with rows corresponding to the set of genes G = {g;, ..., gn},
columns to the set of experimental conditions C = {c,, ...,
cut, and a,, a real number that represents the expression
level of the gene corresponding to row n under the specific
condition corresponding to column m, a submatrix B of 4 is
order preserving if there is a permutation of its columns
under which the sequence of values in every row is strictly
increasing. More precisely, in the case of expression data,
such a submatrix corresponds to a group of genes whose
expression levels induce some linear order across a subset of
the conditions.

Such patterns might arise, for example, if the experiments
in C represent distinct stages in the progression of a disease
or in a cellular process, and the expression levels of all
genes in G vary across the stages in the same way. For
example, in expression data that comes from a population of
patients, such as in Bittner et al. [7], it is reasonable to
expect that each individual is in a particular stage of the
disease. There is a set of genes that are coexpressed with this
progression, and we therefore expect the data to contain a
set of genes and a set of patients such that the genes are
identically ordered on this set of patients. The same situation
occurs when considering data from nominally identical
exposure to the environmental effects, data from drug
treatment, data representing some temporal progression, etc.
In many cases, the data contains more than one such pattern.
For example, in cancer data, patients can be staged
according to the disease progression (as in this study), as
well as according to the extent of genetic abnormalities.
These two orders on some subset of tissues are not
necessarily correlated. Therefore, even in data where some
nominal order is given a priori, we are seeking related or
unrelated hidden orders and the sets of genes that support
them.

4. EXPERIMENTAL VALIDATION
4.1. Results

Since the diagnostic of cancer will be performed using
blood analysis, we are looking for patterns that are specific

to ovarian cancer. Therefore, we are only interested in genes
that are highly expressed in ovarian cancer tissues compared
to normal ovarian tissues and non-ovarian tissues. In other
terms, using each one of the 55 single-biomarker uncovered
in [5], as reference, we have applied the above procedures to
the set of microarray data used in our study and described in
Section 2. We then obtained an initial group of 55 potential
group-biomarkers. After removing overlapping groups, we
ended up with a group of 22 potential group-biomarkers that
can be used for early detection of ovarian cancer.

Figure (1) shows a subgroup of genes that are highly
coregulated across a subset of tissues when the expression
level of Integrin beta 8 is taken as reference. This group-
biomarker comprises Integrin beta 8, Cadherin 6, Kallikrein
8, Forkhead box J1, and Bone morphogenetic protein 7, all
single-biomarkers discovered in [5] and some by previous
studies [1]. It does show that those single-biomarkers work
together in this subgroup of patient. The other genes in this
group-biomarker represent the genes that exhibit coherent
behavior with the above mentioned single-biomarkers. They
are highly expressed in ovarian cancer tissues compared to
normal ovarian tissues and non-ovarian tissues but, they also
show some expression in about 10% of the non-ovarian
tissues.

Figure 1: Example of potential group-biomarker composed of 39
genes. This group-biomarker comprises Integrin beta 8, Cadherin
6, Kallikrein 8, Forkhead box J1, and Bone morphogenetic protein
7 which are highly and only expressed in ovarian cancer tissues.

4.2. Statistical Analysis

We can compare the detection performance of group-
biomarkers to that of individual biomarkers as follows. Let a
be the number of healthy tissues that screen positive, b the
number of diseased tissues that screen positive, ¢ the number
of healthy tissues that screen negative and d the number of
diseased tissues that screen negative. We define the
following parameters:

- The sensitivity of a biomarker (Se): number of
diseased tissues that screen positive divided by the
total number of diseased tissues: equation (1).
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Se=—— (1)

- The specificity of a biomarker (Sp): number of healthy
tissues that screen negative divided by the total
number of healthy tissues: equation (2).

Sp=—= @
c+a

Using the above parameters, we plotted the Receiver
Operating Characteristics (ROC) curve of the potential
single-biomarkers and group-biomarkers: equation (3).

sensitivity = f(1-specificity) 3)

Figure (2) for example represents the ROC curve of the
group-biomarker represented by figure (1) above and each
potential single-biomarkers that are part of it: (Integrin beta
8, Cadherin 6, Kallikrein 8, Forkhead box J1, and Bone
morphogenetic protein 7). The red line represents the ROC
of the group-biomarker when at least 70% of its genes are
expressed, the green line the ROC of the group-biomarker
when 100% of its genes are expressed, the blue line
represents the ROC curve of Integrin beta 8, the yellow line
the ROC curve of Cadherin 6, the magenta line the ROC
curve of Forkhead box JI, the black line the ROC curve of
Bone morphogenetic protein 7, the cyan line the ROC curve
of Kallikrein 8. We can easily see that in any case group-
biomarker either expressed at 70% or 100% performs better
than each single-biomarker. The analysis of the other 22
group-biomarkers confirmed this conclusion.

Sensisivity

0.4 0.5 0.6 0.7 0.8 0.9 1
1-Specificity

Figure 2: ROC curve, group-biomarker of figure (1) and
each one of its single-biomarker. The red line represents the
ROC of the group-biomarker when at least 70% of its genes
are expressed, the green line the ROC of the group-biomarker
when 100% of its genes are expressed, the blue line represents
the ROC curve of Integrin beta 8, the yellow line the ROC
curve of Cadherin 6, the magenta line the ROC curve of
Forkhead box Jl, the black line the ROC curve of Bone
morphogenetic protein 7, the cyan line the ROC curve of
Kallikrein 8.

5. CONCLUSION

In this study, we proposed and develop a novel concept
termed group-biomarkers that can be used for early
detection and/or recurrent ovarian cancer. Statistical analysis
of the potential 22 group-biomarkers obtained shows that
they do perform better than single-biomarkers.

The well separated histograms of their gene expression
patterns in normal and non-ovarian tissues and cancerous
ovarian tissues of the group-biomarkers identified make
them more promising and robust biomarkers for early
detection and/or recurrent ovarian cancer using blood
diagnostic. Immunohistochemistry analysis and reverse
transcriptase polymerase chain reaction screening of all
group-biomarkers are currently in progress and will allow
their biological wvalidation. Also, we are currently
performing some biological search to see if there exists a
biological correlation among the genes that belong to the
same group-biomarker. The aim here is to see how those
genes interact with each other during the early stage of the
disease.
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