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ABSTRACT

Within-subject analysis in event-related functional Magnetic Res-
onance Imaging (fMRI) first relies on (i) a detection step to local-
ize which parts of the brain are activated by a given stimulus type,
and then on (ii) an estimation step to recover the temporal dynam-
ics of the brain response. Recently, we have proposed a Bayesian
detection-estimation approach that jointly addresses (i)-(ii) [1]. This
approach provides both a spatial activity map and an estimate of
brain dynamics. Here, we consider an extension that accounts for
spatial correlation using a spatial mixture model (SMM) based on
a binary Markov random field. It allows us to avoid any spatial
smoothing of the data prior to the statistical analysis. Our simula-
tion results support that SMM gives a better control of false positive
(specificity) and false negative (sensitivity) rates than independent
mixtures.

Index Terms—Bayes procedures, Biomedical signal detection,
Magnetic resonance imaging.

1. INTRODUCTION

Since the first report of the BOLD effect in human [2], functional
MRI (fMRI) has represented a powerful tool to non-invasively study
the relation between cognitive task and the hemodynamic (BOLD)
response. Within-subject analysis in fMRI essentially addresses two
problems. The first one is about the detection or localization of ac-
tivated brain areas in response to a given stimulus type or experi-
mental tasks, while the second one concerns the estimation of the
temporal dynamic of activated voxels, also known as the Hemody-
namic Response Function (HRF). In [1], a novel detection estimation
approach has been proposed to address both issues in a region-based
analysis, that is on a set of prespecified regions of interest (ROI).
Within the Bayesian framework, we first integrated physiological
prior information to obtain a slow-varying time course as an esti-
mate of the HRF in every ROI. We have also considered different
two-class independent mixture models (IMM) as prior distribution
on the response magnitude to accomodate the voxel and stimulus-
dependent signal fluctuations within the ROI [3].

In this paper, we introduce an extension based on spatialmixture
models (SMM) that accounts for spatial correlation between neigh-
boring voxels in the brain volume (regular lattice in 3D) or on the
cortical surface (irregular lattice in 2D) [4–6]. The ensued goal is
to favor the detection of activating clusters rather than isolated vox-
els. This extension consists in modelling a priori the state of a given
voxel (non-activating, activating) depending on its neighbors using
a symmetric Ising random field. In this regards, our work is close

to [5] but more general in the sense that the HRF is estimated in the
same time. The parameter controlling the strength of the spatial cor-
relation is set by hand, as the smoothing level used when spatially
filtering the data. The combination of these prior distributions with
the likelihood allows us to derive the target posterior distribution
using Bayes’ rule. We then resort to Gibbs sampling to draw realiza-
tions from this posterior law. The posterior mean (PM) estimates of
the HRF, the Neural Response Levels (NRLs) and the correspond-
ing labels are directly computed from the generated samples in the
Markov Chain Monte Carlo (MCMC) procedure. Compared to [1],
a significant gain is achieved in terms of sensitivity and specificity
on artificial fMRI data.

2. REGION-BASED MODELLING OF fMRI DATA

2.1. Motivations

Hypothesis-driven approaches postulate a model of the HRF response
and enable local inference at the voxel level. Such methods take
place in the General Linear Model (GLM) framework. They have
been popularized by the Statistical Parametric Mapping software
(SPM, http://www.fil.ion.ucl.ac.uk/spm). In this formulation, the
model chosen for the BOLD response is a crucial issue. SPM uses
the same temporal model for the whole brain for simplicity and com-
putational reasons. To help cognitive interpretations, we rather ad-
vocate for the necessity of a spatially adaptive GLM in which local
estimation of the HRF would be performed. The latter does not need
to be done at the voxel level, but rather at a coarser regional scale.
To define this scale, we use a segregation of the brain volume con-
strained to the grey matter mask into a few hundreds of connected
ROIs, called parcels. Any parcellation procedure can be used, as
long as functional homogeinity is guaranteed within each parcel. In
this respect, the assumption of a shape-invariant HRF is maintained.

(a) (b)

Fig. 1. (a): Slice of the color-coded parcellation at z = −4mm.

(b): Parcel-based model of the BOLD signal.
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Actually, we resort to [7] and Fig. 1(a) shows a slice resulting from
such a parcellation.

2.2. Within-parcel formulation

Here, the parcel-based model of the BOLD signal introduced in
[1] is adopted. As shown in Fig 1(b), it characterizes every par-
cel P = (Vj)j=1:J by a single HRF shape and accounts for voxel-
dependent and stimulus-related fluctuations of the magnitude of the
BOLD signal. The BOLD fMRI time course measured in voxel Vj

at times (tn)n=1:N (where tn = nTR, N being the number of scans
and TR, the time of repetition) then reads

yj =

MX
m=1

am
j Xmh + P �j + bj , ∀ j, Vj ∈ P, (1)

This model remains time-invariant while it incorporates voxel de-
pendent and stimulus related amplitudes Neural Response Levels
(NRLs) � = (am

j ). Xm = (xm
tn−dΔt)n=1:N,d=0:D is a N×(D+1)

binary matrix that codes the arrival times of the mth stimulus. Δt is
the sampling period of the HRF usually lower than TR. The stim-
ulus onsets are put on the Δt-sampled grid by moving them to the
nearest time point on this grid. Vector h = (hdΔt)d=0:D repre-
sents the unknown HRF shape in parcel P . A single HRF shape is
sufficient provided that P is functionally homogeneous. Note also
that P �j models a low-frequency trend to account for physiological
artifacts and that bj ∼ N (0, σ2

bj
) stands for the noise. For simplic-

ity reasons, we have just considered a Gaussian white noise model,
while more sophisticated modelling can be introduced using AR pro-
cesses to account for serial correlation in the fMRI time series [8].

3. THE DETECTION-ESTIMATION PROBLEM

3.1. Non-spatial vs spatial mixture modelling

We propose to estimate the HRF shape h and the corresponding
NRLs � in P . Our aim is also to classify which voxels in P are
involved in the experimental paradigm. Hence, in [1] we intro-
duced non-spatial two-class mixture models for every condition m,
in which class 0 describes non-activating voxels and class 1 mod-
els activating voxels in response to the mth stimulus type. In [3],
we compared different types of mixture priors (two-class Gaussian
(GGM) and Gamma-Gaussian (GGaM)). Importantly, we have shown
that inhomogeneous GGaM better control the false positive rate in
comparison with GGM, specifically in brain regions where most
voxels are non-activating. Hence, they provide more reliable statis-
tical maps. However, inference based upon GGa mixtures is compu-
tationally expensive. As a consequence, following [4–6,9] we resort
here to Gaussian spatial mixture modelling to control the specificity.

Our approach stands in the Bayesian framework, and so inte-
grates prior knowledge on the sought objects, i.e. the HRF and the
NRLs.

3.2. Priors

The HRF. According to [10], the HRF can be characterized as
a causal slow-varying function which returns to its baseline after
about 25 s. These assumptions lead to select a Gaussian prior on
h ∼ N (0, σ2

hR), where R = (Dt
2D2)

−1 is a symmetric positive
definite matrix and D2 is the truncated second-order finite differ-
ence matrix of size (D−1)×(D−1) such that ‖∂2h‖2 = htR−1h.

The NRLs. We assume that different types of stimulus induce sta-
tistically independent NRLs i.e., p(� | θa) =

Q
m p(am | θm) with

� = (am)m=1:M , am = (am
j )j=1:J and θa = (θm)m=1:M .

Vector θm denotes the set of unknown hyperparameters related to
the mth stimulus type. We define a spatial Bayesian model by in-
troducing binary indicator variables qm

j that states whether voxel
Vj is activated (qm

j = 1) or not (qm
j = 0) in response to stim-

ulus m, so that the NRL am
j is normally distributed according to

am
j | qm

j = i ∼ N (μi,m, vi,m), with i = 0, 1. We impose μ0,m = 0
for the mean of the NRLs in non-activating voxels, leading to θm =
[v0,m, μ1,m, v1,m]. Note that a Bernoulli-Gaussian formulation has
also been tested in fMRI in [5]. This modelling corresponds to a
degenerate mixture in which am

j = 0 if qm
j = 0.

In an IMM, the mixing probability Pr(qm
j = 1) = λm is inde-

pendent of j. Here, we introduce space-varying probabilities λj,m

through a spatially correlated Ising prior on the binary variables qm,
while the NRLs remain independent conditionally to qm. An Ising
model is a binary MRF commonly used in image analysis [9, 11]. It
is of particular interest in fMRI analysis since it allows spatial cor-
relation to be directly incorporated on the probabilities of activation.
In what follows, we consider a symmetric Ising MRF defined by

Pr(qm |βm) = Z(βm)−1 exp
“
−βm

X
j∼k

ωjkI(qm
j = qm

k )
”
, (2)

where I(A) = 1 if A is true and I(A) = 0 otherwise. The notation
j ∼ k means that the sum extends over all neighboring voxels, while
ωjk are prespecified constants that weight the interaction between
voxels (Vj , Vk) according to the neighborhood system. It can be
defined either in 3D in the brain volume intersecting parcel P or in
2D along the cortical surface. In this paper, we only consider the 3D
case using 18 or 26 nearest neighbors. This means that wjk = 1 for
horizontal and vertical neighbors in a given slice and wjk = 1/

√
2

for directly adjacent diagonal voxels. Note also that this MRF is
hidden since � = (qm)m=1:M are not observed in (1).

The parameter βm > 0 in (2) controls the amount of spatial
smoothing, with the elements of qm being independent if βm =
0. Large values of βm associates higher probabilities to configura-
tions containing clusters of like-valued neighboring binary variables.
Function Z is a normalizing constant also called the partition func-
tion. Here, we do not estimate it since βm is set by hand. For future
adaptive spatial smoothing, Z could be evaluated on a discrete grid
to make the sampling of βm feasible (see [9, 11]). Combining all
information, we get a spatial mixture model for every stimulus type:

p(am | θm) =
X
qm

ˆ JY
j=1

p(am
j | qm

j , θm)
˜
Pr(qm |βm) (3)

Other parameters. To complete the Bayesian model, priors are
required for all the remaining parameters. For the drift parameters,
we assume that (�j)j are independent of h and that p((�j)j |σ2

� ) =Q
j p(�j |σ2

� ) with �j ∼ N (0, σ2
� IQ) where Q defines the size of

the orthogonal basis P . Without informative prior knowledge, we
define p(σ2

h , σ2
� ) = (σhσ�)

−1 and p(ε) =
Q

j ε−1
j . For variance

v0,m, we choose an improper Jeffreys’ prior p(v0,m) = v
−1/2
0,m be-

cause we do expect non-activating voxels in any parcel. Hence, class
0 should never be empty a priori. However, for variance v1,m, we re-
sort to a conjugate prior (inverse Gamma pdf) denoted as IG(av1 , bv1)
since the class of activating voxels may be empty. We thus avoid de-
generacy problem that could prevent its sampling. In the same way,
we introduce a proper priorN (aμ1 , bμ1) on μ1,m.
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3.3. The joint posterior distribution

Considering the constructed model and assuming no further prior
dependence between parameters, Bayes’ rule gives us:

p(h,�, (�j),Θ |y) ∝ p(y |h, a, (�j), ε
2) p(� | θa) p(h |σ2

h)×
× p((�j) |σ2

� ) p(ε) p(σ2
h) p(σ2

� )
Y
m

p(θm).

Here, the nuisance variables (�)j are integrated out. This yields:

p(h,�,Θ |y) ∝
„ JY

j=1

ε−N−1+Q
j

«
σ−D
h exp

„
−htR−1h

2σ2
h

«

exp

„
−
PJ

j=1 eyt
jQj eyj

2

« MY
m=1

„
p(am | θm)p(θm)

«
. (4)

withQj =
`
IN − P P t

´
/ε2j , eyj = yj−Sjh andSj =

P
j am

j Xm.
To get samples of the posterior pdf, we use a Gibbs sampler which
consists in building a Markov chain, whose target distribution is (4),
by sequentially generating random samples from the full conditional
pdfs of all the unknown parameters and hyperparameters. Finally,
posterior mean (PM) estimates are computed from the samples ac-
cording to the following rule: bxPM = (K − I)−1 PK

k=I+1 x(k),
∀x ∈ {h,�,�,Θ} where I stands for the length of the burn-in
period. The sampling scheme for the posterior mixtures (�,�) is
detailed in the next paragraph while for other quantities of interest
(h,Θ), the reader may refer to [1, Appendix A] since their sampling
remains unchanged.

3.4. Computational details

Since the prior on the NRLs (�) is a Gaussian mixture and the like-
lihood is Gaussian, then the full posterior pdf of � is a Gaussian
mixture. From (4), it can be shown that each am

j ∈ � is obtained by
sampling a 2-class posterior spatial Gaussian mixture in voxel Vj for
the mth stimulus type. Letting Nj = {Vk | k ∼ j}, the latter reads:

p(am
j |yj , h, θm, ε2j , a

m′ �=m
j , qm

k∈Nj
, βm) =

X
i=0,1

λm
i,jN

`
μm

i,j , v
m
i,j

´

which can be decomposed in three steps: (i) Identify the poste-
rior parameters (λm

i,j , μ
m
i,j , v

m
i,j); (ii) Sample the binary label qm

j

according to λm
i,j and (iii) Sample the NRL am

j | qm
j according to

q1 q2

a1 a2

Fig. 2. True labels qm (activating in white and non-activating in

black) and true NRLs am for the two stimulus types involved in the

simulated data.

N (μm
i,j , v

m
i,j). As detailed in [1, Appendix A], we have for i = 0, 1:

vm
i,j =

`
v−1

i,m + gt
mQjgm

´−1
, μm

i,j = vm
i,j

“
gt

mQjem,j + i
μi,m

vi,m

”

where gm = Xmh and em,j = yj−P
m′ �=m am′

j gm′ = eyj +gm.
The posterior probability λm

i,j of the event qm
j = i reads:

λm
i,j =

„
1 +

rm
1−i,j

rm
i,j

=πm
1−i,jz }| {

Pr(qm
j = 1− i | qm

k∈Nj
, βm)

Pr(qm
j = i | qm

k∈Nj
, βm)| {z }

= πm
i,j

«−1

(5)

with rm
i,j =

`
vm

i,j/vi,m

´1/2
exp

`
(μm

i,j)
2/vm

i,j − i(μm
i )2/vm

i

´
. To

calculate (5), we need to evaluate

κm
j = πm

1−i,j/πm
i,j = exp

“
βm Σ

k∈Nj

wjk(1− 2qm
k )

”
.

4. SIMULATION RESULTS

4.1. Artificial fMRI datasets

We simulated a random mixed sequence of indexes coding for M =
2 different stimuli (see Fig. 3(a)). These two set of trials (30 trials
per stimulus) were then multiplied by stimulus-dependent and space-
varying NRLs, which were generated according to (3) (cf. Fig. 2).
To this end, we generated 2D slices composed of 40 x 40 binary
labels qm (activating and non-activating voxels) simulated from an
Ising MRF for each stimulus type m. As shown in Fig. 2, we used
a relatively large amount of spatial correlation (βm = β = 0.6).
Then, we simulated normally-distributed NRLs:

(a1
j | q1

j = 0) ∼ N (0, .3), (a1
j | q1

j = 1) ∼ N (1.5, .5),

(a2
j | q2

j = 0) ∼ N (0, .6), (a2
j | q2

j = 1) ∼ N (1, .5).

Since μ1,2 < μ1,1, a lower signal-to-noise ratio (SNR) is obtained
for stimulus type 2. While Eq. (3) tells that NRLs am are indepen-
dent conditionally to qm, Fig. 2(c)-(d) illustrate the impact of the
spatial correlation of activation probabilities qm on the NRL maps.
Following Fig. 1(b), the signal Sjh was obtained after convolving
the NRL-modulated stimuli sequence with a HRF h, whose exact
shape appears in Fig. 3 in blue. White Gaussian noise bj and low-
frequency drift P �j

1 were then superimposed to Sjh in voxel Vj .

4.2. Results with non-spatial vs spatial mixtures

We tested our method on this artificial fMRI dataset and compared
it to previous work involving non-spatial mixtures [1]. First, note
that both approaches provide very close HRF estimates as seen in
Fig. 3(e). The marginal posterior activation probability maps (PPM)
which are computed as (bqm)PM for m = 1, 2, are reported in Fig 4.
It is shown that the proposed SMM provides as expected more reli-
able results than IMM in terms of false positive and negative rates,
particularly in the low SNR situation arising for m = 2 (compare
Fig. 4(a)-(b) with Fig. 4(c)-(d), respectively). The NRLs estimates
are recovered more accurately using a SMM (result not shown).

In order to better assess the differences, we applied a variable
threshold upon the marginal PPM and built classical Receiving Op-

1P was defined from a cosine transform basis and parameters �j were

drawn from a normal distribution.
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Paradigm h Noise bj + drift �j fMRI data yj

� + =

(a) (b) (c) (d)

scan number Time in s scan number scan number

=⇒

bhPM

(e)

Time in Δt = 0.5s

Fig. 3. (a)-(d) Simulation of artificial fMRI datasets. (e): True HRF (blue) and its SMM (red) and nSMM (yellow) estimates.

(a)
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(bq1)PM (bq2)PM

S
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Fig. 4. Marginal PPM for the non-spatial (top) and spatial (bottom)

mixture models. m = 1: (a)-(c); m = 2: (b)-(d).
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Fig. 5. ROC curves for non-spatial vs spatial mixture models.

erator Characteristics (ROC) curves. Fig. 5 illustrates that our SMM
extension provides a more sensitive detection when specificity is
fixed (vertical threshold) and conversely, that we obtain an improved
specificity (or a more powerful statistical test) at a given sensitiv-
ity (horizontal threshold). The level of improvement depends on the
SNR but is significant for both experimental conditions (red curve
above green curve). Hence spatial correlation achieves a much more
powerful discrimination at low SNR and succeeds well in recovering
structural information from strongly altered signals.

5. CONCLUSION

The proposed contribution has shown promising results and has achie-
ved the goal of handling very low SNR situations with an equally
reliable dynamics estimation and an improved activation detection
compared to the original approach [1]. We have statistically settled
this result by highlighting more sensitive and specific tests on the ac-
tivation detection. The proposed model needs to be further tested on
simulated data which diverge from the priors used in the estimation.
Moreover, assession on real fMRI data must of course be conducted.

Our current method could be enhanced with adaptive spatial cor-
relation meaning an unsupervised setting of the correlation factors.
One immediate approach would be to “hand tune” these factors by

experimenting ranges of sensible values adapted to the BOLD data.
A more skillfull approach would consist in sampling the parameters
βm in a fully Bayesian approach. This requires the precise com-
putation of the partition function Z(βm) prior to running the Gibbs
sampler. Fortunately, this topic has been strongly investigated [9,11].

6. REFERENCES

[1] S. Makni, P. Ciuciu, J. Idier, and J.-B. Poline, “Joint detection-
estimation of brain activity in functional MRI: a multichannel
deconvolution solution,” IEEE Trans. Signal Processing, vol.
53, no. 9, pp. 3488–3502, Sep. 2005.

[2] S. Ogawa, T. Lee, A. Kay, and D. Tank, “Brain magnetic reso-
nance imaging with contrast dependent on blood oxygenation,”
Proc. Natl. Acad. Sci. USA, vol. 87, no. 24, pp. 9868–9872,
1990.

[3] S. Makni, P. Ciuciu, J. Idier, and J.-B. Poline, “Bayesian
joint detection-estimation of brain activity using MCMC with
a Gamma-Gaussian mixture prior model,” in Proc. 31th Proc.
IEEE ICASSP, May 2006, vol. V, pp. 1093–1096.

[4] N. Vaever Hartvig and J. Jensen, “Spatial mixture modeling of
fMRI data,” Hum. Brain Mapp., vol. 11, no. 4, pp. 233–248,
2000.

[5] M. Smith, B. Pütz, D. Auer, and L. Fahrmeir, “Assessing brain
activity through spatial Bayesian variable selection,” Neuroim-
age, vol. 20, pp. 802–815, 2003.

[6] M. Woolrich, T. Behrens, Ch. Beckmann, and S. Smith, “Mix-
ture models with adaptive spatial regularization for segmen-
tation with an application to fMRI data,” IEEE Trans. Med.
Imag., vol. 24, no. 1, pp. 1–11, Jan. 2005.

[7] B. Thirion, G. Flandin, P. Pinel, A. Roche, P. Ciuciu, and J.-B.
Poline, “Dealing with the shortcomings of spatial normaliza-
tion: Multi-subject parcellation of fMRI datasets,” Hum. Brain
Mapp., vol. 27, no. 8, pp. 678–693, Aug. 2006.

[8] M. Woolrich, B. Ripley, M. Brady, and S. Smith, “Temporal
autocorrelation in univariate linear modelling of fMRI data,”
Neuroimage, vol. 14, no. 6, pp. 1370–1386, Dec. 2001.

[9] D. Smith and M. Smith, “Estimation of binary Markov ran-
dom fields using Markov Chain Monte Carlo,” J. Comput. and
Graph. Stats., vol. 15, no. 1, pp. 207–227, 2006.

[10] G. Marrelec, H. Benali, P. Ciuciu, M. Pélégrini-Issac, and J.-B.
Poline, “Robust Bayesian estimation of the hemodynamic re-
sponse function in event-related BOLD MRI using basic phys-
iological information,” Hum. Brain Mapp., vol. 19, no. 1, pp.
1–17, May 2003.

[11] D. M. Higdon, “Auxiliary variable methods for Markov chain
Monte Carlo with applications,” J. Amer. Statist. Assoc., vol.
93, no. 442, pp. 585–595, June 1998.

I  328


