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ABSTRACT

A main purpose of data analysis in functional Magnetic Res-

onance Imaging (fMRI) is to determine which regions of the

brain are activated by pre-specified temporal stimuli. In re-

cent work, under the assumption of known spectra, we de-

veloped a detection statistic based on a spatially and tempo-

rally correlated noise model. In this paper, we implement

the developed test statistic, which includes spatial and tem-

poral whitening operators. For the estimation of spatial and

temporal correlations, we use the parametric cepstral model-

ing, which allows dramatic reduction of computation in the

model fitting and very simple methods to obtain spatiotem-

poral whitening operators. Model comparison and selection

are discussed as well. We apply the developed techniques to

a human dataset.

Index Terms— Detection statistic, spatial and temporal

correlations, and parametric cepstral modeling.

1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) uses Nu-

clear Magnetic Resonance (NMR) to investigate functional

activities of human brain. Due to the difference of magnetic

susceptibilities of hemoglobins with different oxygenation lev-

els, the local change of oxygenation level in brain causes the

regional change of the MR decay parameter T ∗
2 , leading to

the change in the intensity of image. During a typical fMRI

experiment, a pre-specified temporal stimulus which is a peri-

odic pulse is given to a subject in the MR scanner. While the

subject reacts to the stimulus, the scanner can capture images

reflecting changes in the subject’s brain in rapid succession,

typically every second.

The observed fMRI signal can be represented as the super-

position of the Blood Oxygenation Level Dependent (BOLD)

response st,v and the brain noise wt,v, where t represents time

and v means voxel position. The BOLD response st,v can be

thought of as a spatiotemporal response of subject’s brain to

a given temporal stimulus ct. The brain noise wt,v consists

of two factors, one of which is the hemodynamic fluctuation

from unknown origins, possibly related to physiological back-

ground processes in the brain and cardiac fluctuations. The

other is the thermal noise from an MR scanner. Thus, wt,v

is spatially and temporally correlated. There may be other

sources of spatial correlation. For example, techniques to re-

duce motion artifacts and to reconstruct images in discrete

k-space can induce spatial correlation.

In the dominant current approach to construct an activa-

tion map, however, the spatial dependence has not been fully

considered [1]. An activation map is just a spatial plot of a de-

tection statistic. In our recent work [2], under the assumption

of known spectra, we developed a detection statistic based on

a spatially and temporally correlated noise model. In practice,

since spatial and temporal correlations need to be estimated,

its implementation requires non-trivial statistical model esti-

mation. In this paper, we propose a method which is unusual

and based on a truncated cepstrum expansion for the modeling

of noise structure. In addition, adjustment terms to reflect the

difference between estimates of spatiotemporal spectra under

different hypotheses are added to the developed statistic for a

more practically satisfactory detection statistic. Model com-

parisons to determine the order of the proposed model and to

compare it with an existing model are discussed as well.

2. SIGNAL MODELING AND DETECTION

An observed fMRI signal model which is widely used has the

following linear form [3]. For t = 1, . . . , T , v = 1, . . . , M ,

ignoring baseline and temporal drift,

yt,v = st,v + wt,v = ξT
t fv + wt,v, (1)

ξt � [ξ1,t, . . . , ξL,t]
T
, fv � [f1,v, . . . , fL,v]T ,

where st,v is the BOLD response and wt,v denotes zero mean

spatiotemporally stationary Gaussian random field. The BOLD

response st,v models the brain reaction to a given temporal

stimulus ct in the experiment. In (1), the BOLD response is

described as

st,v =

(
L∑

i=1

hi,tfi,v

)
∗ ct �

L∑
i=1

ξi,tfi,v, (2)

where L is the number of basis functions to represent st,v , hi,t

is the i-th basis function, and fi,v is the associated activation
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amplitude. Note that (2) is a generalized representation which

covers various modelings of st,v such as parametric modeling

with the canonical Hemodynamic Response Function (HRF)

[4], FIR approach [5], and Laguerre modeling [6]. The uncor-

rected motion artifacts and magnetic field inhomogeneity are

modeled in the baseline and temporal drift. In section 5, these

two terms will be removed by Ordinary Least Square (OLS)

before applying the suggested techniques.

2.1. Classical Detection Statistic : GLM

The General Linear Model (GLM) used in Statistical Para-

metric Mapping (SPM) has a different model from (1) ;

yt,v = st,v + ηt,v = ξT
t fv + ηt,v, (3)

where ηt,v is a zero mean Gaussian noise which is spatially

non-stationary, independent and temporally stationary. To be

specific, it has spatially varying variance σ2
v and its temporal

characteristic is modeled as AR(1) process with a common

coefficient ϕ. SPM contains spatial smoothing by Gaussian

amplitude kernel KG
v and temporal filtering by φt. After spa-

tial smoothing and temporal filtering are performed, for each

voxel time course, F -statistic is built up from OLS.

2.2. New Detection Statistic : ST-LRT with Adjustment

Assuming the space-time separability, we developed a new

detection statistic through Likelihood Ratio Test (LRT) in spa-

tiotemporal DFT domain with the full consideration of spatial

and temporal correlations [2]. For simplicity, we used the

parametric approach for the modeling of st,v (thus, L = 1 in

(1)) and assumed spatial and temporal spectra are known. The

space-time separability is defined as Fk,l = FkGl, where

Fk,l is discrete spatiotemporal Power Spectral Density (PSD),

Fk means pure temporal PSD, and Gl represents pure spatial

PSD. k is an index for temporal frequency and l is an index

for spatial wave-number.

In practice, since the estimation of spatial and temporal

spectra is needed, LRT has extra terms which induce adjust-

ment terms in the originally proposed detection statistic in [2].

To develop an activation map, we consider the hypotheses,

H0 : fv = 0 for all v, (4)

H1 : fv �= 0 for some v. (5)

By the same idea as in section 3 of [2], it can be shown that

the spatial decomposition of LRT (=
∑

v LRTv) allows the

following Spatio-Temporal LRT (ST-LRT) in two pieces ; a

noise piece and a signal piece,

LRTv � LRTN
v + LRTS

v , (6)

where LRTN
v reflects the difference between estimates of

spatiotemporal spectra under H0 and H1. Note that, if we

know true spatial and temporal spectra, LRTN
v term vanishes,

leading to LRTv = LRTS
v which is the same as in [2]. Here,

with noticing an identity, TMθ0,0 =
∑

k,l log FkGl, one has

LRTN
v � T ·

(
θ̂0,0,0 − θ̂1,0,0

)
+

T∑
t=1

(
ε2
0,t,v − ε2

1,t,v

)
,

(7)

LRTS
v �

(
T∑

t=1

ε1,t,vξF
t

T

)(
T∑

t=1

ξF
t ξF

t

T

)−1 (
T∑

t=1

ε1,t,vξF
t

)
,

(8)

where, under Hj for j = 0 and 1, θ̂j,0,0 is the value of the

estimated cepstrum evaluated at (t, v) = (0, 0) and εj,t,v are

spatiotemporally whitened yt,v . To be more specific, εj,t,v �
Kj,v �s (gj,t � yt,v), where � and �s mean temporal and

spatial circular convolution, respectively. ξF
t is temporally

whitened ξt defined as ξF
t � (g1,t�ξt) under only H1. Under

Hj , gj,t is a causal temporal whitening filter and Kj,v is a

spatial whitening kernel, which are given by,

gj,t
DFT←→ g̃j,k, |g̃j,k|2 =

1

F̂j,k

, Kj,v
DFT←→ 1√

Ĝj,l

. (9)

Unlike the ad hoc spatial smoothing of the classical approach,

note that Kv has the relation inherently to spatial correlation

and it is rather more like a spatial differentiator.

3. IMPLEMENTATION OF ST-LRT

In practice, each PSD should be estimated from a given data.

Under Gaussian stationarity, a widely used method is AR-

based parametric spectral estimation. Since the Fundamental

Theorem of Algebra does not hold in multi dimensions (e.g.,

2D or 3D), the asymptotic likelihood equation to fit multi-

dimensional AR or ARMA model can not be solved linearly

as in one dimension. As a matter of fact, even the existence of

purely spatial (2D) solution is not guaranteed. [7] suggested

the parametric cepstrum to solve this problem. The model by

parametric cepstrum allows dramatic reduction of computa-

tion in the fitting process with only FFTs and an easy descrip-

tion of hypothesis such as space-time separability. Here, we

extend the purely spatial setup in [7] to the current spatiotem-

poral situation which requires temporal causality and suggest

a way to obtain necessary whitening operators from estimated

cepstrums. In addition to that, model comparison techniques

are suggested with Akaike Information Criterion (AIC).

3.1. Parametric Cepstrum

In three dimensions, one is for time and two are for space

(namely, v � (r, s)), the parametric cesptrum can be obtained

by windowing cepstral coefficients θtrs,

F̃kl1l2 � F̃ (ωk, λl1 , λl2) = log F (ωk, λl1 , λl2) (10)

=
n∑

t=−n

p∑
r=−p

q∑
s=−q

θtrse
−j(ωkt+λl1r+λl2s),
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at each frequency of ωk = 2πk/T , λl1 = 2πl1/M1, and

λl2 = 2πl2/M2. Here, M1 and M2 mean the number of

voxels along r-axis and s-axis, respectively. n represents the

temporal order and (p, q) means the spatial orders. The space-

time separability has the following linear condition in cepstral

domain : for ∀(t, r, s) �= (0, 0, 0),

θtrs = θt00δ0rs + θ0rsδt00, (11)

which means only θtrss on the central rs-plane located at

t = 0 and along the temporal axis have non-zero values. The

symmetry of cepstrum (θt,v = θ−t,−v for ∀(t, v)) allows a

simple expression of (10), an inner product of two vectors

as shown in (19). Under the space-time separability in (11),

there are R(� 2pq + p+ q +n+1) cepstral coefficients to be

estimated.

Under Hj for j = 0, 1, after the estimation of cepstral

coefficients is performed, it can be shown that the following

relations are equivalent to (9),

Kj,v
CT←→ −1

2
θ̂j,0,v, gj,t

CT←→
(
−θ̂j,t,0

)+

, (12)

where CT denotes cepstral transformation and (θ̂j,t,v)
+

is the

causal part of θ̂j,t,v in cepstral domain. The causality of θ̂j,t,0

is required due to that of gj,t. Thus, after estimating cepstral

coefficients, we can easily obtain two whitening operators by

simple algebra and FFTs under each hypothesis.

3.2. Noise Model Fitting with MLE

For three-dimensional stationary random field wtrs with zero

mean, the periodogram is defined by Ikl1l2 � |w̃kl1l2 |2
TM1M2

, where

w̃kl1l2 is the DFT of wtrs. By CLT, assuming all cumulants

and sum of joint cumulants are bounded [8], we have the

well-known asymptotic distribution, for ∀(k, l1, l2) ∈ Ωh �
∪3

i=1Ωi,
Ikl1l2

Fkl1l2

∼ χ2
2

2
, (13)

where Ωh denotes the half of the whole region Ωf and Ωh

excludes the origin. Here, periodograms at different ordinates

are asymptotically independent and χ2
2 denotes chi-square dis-

tribution with two degrees of freedom. Ωf and Ωi have the

following index regions,

Ωf = {|k| ≤ km, |l1| ≤ lm1 , |l2| ≤ lm2 }, (14)

Ω1 = {1 ≤ k ≤ km,−lm1 ≤ l1 ≤ lm1 ,−lm2 ≤ l2 ≤ lm2 }, (15)

Ω2 = {k = 0, 1 ≤ l1 ≤ lm1 ,−lm2 ≤ l2 ≤ lm2 }, (16)

Ω3 = {k = 0, l1 = 0, 1 ≤ l2 ≤ lm2 }, (17)

where, if T , M1, and M2 are all odd, km = (T − 1)/2, lm1 =
(M1 − 1)/2 and lm2 = (M2 − 1)/2. Note that Ik,l1,l2 =
Ik+T,l1+M1,l2+M2 and Fk,l1,l2 = Fk+T,l1+M1,l2+M2 for any

integer k, l1 and l2. Taking the logarithm of (13) allows

Ykl1l2 � log Ikl1l2 − ψ(1) = log Fkl1l2 + εkl1l2 , (18)

where εkl1l2 is an independent and identical extreme value

distribution with zero mean and ψ′(1) = 1.6449 variance.

ψ(1) = −0.5772 is called Euler Constant. Under the space-

time separability, plugging (10) into (18) allows a classical

linear regression equation,

Ykl1l2 = xT
kl1l2θ + εkl1l2 , (19)

where xT
kl1l2

is a row vector representing lexicographically

ordered cosine terms in (10) and θ contains associated θtrs

terms. For specific expressions of these two vectors, see [7].

Note that sine terms are canceled out due to the symmetry of

θt,v . Although Least Square Estimate (LSE) of θ is not effi-

cient in this case, it is unbiased and can be easily computed

with a simple bias correction term in model fitting [7].

Then, to obtain Maximum Likelihood Estimate (MLE) of

θ, this LSE is used as an initial value in an iterative method

based on Whittle’s asymptotic log-likelihood equation and

scoring algorithm, in which cepstrum allows a simple form.

Details of model fitting are discussed in section III of [9].

4. MODEL SELECTION AND COMPARISON

Using AIC, we can not only compare models with different

structures such as ST-LRT model and GLM but also models

with the same structure to determine a proper order. First,

a model selection for ST-LRT is considered in this section.

Then, we move our discussion to the model comparison.

To select a proper model order for ST-LRT, i.e., to deter-

mine (L, n, p, q), a four-dimensional search is necessary. By

CLT in DFT domain [2], we obtain the following AIC and the

minimization of JR,L(�AIC) gives (L, n, p, q).

JR,L =
∑
k,l

log F̂1,k,l +
|ỹk,l − ξ̃T

k
̂̃
fl|

2

TM · F̂1,k,l

+ 2(R + L), (20)

where all estimates are MLEs and R is the number of cepstral

coefficients. Here, with Parseval’s relation, the spatial decom-

position of JR,L allows the following AIC map for ST-LRT

model :

AICLRT
v = T ·θ̂1,0,0+

∑
t

(K1,v �s g1,t � et,v)2+
2(R + L)

M
,

(21)

where et,v � yt,v − ξT
t f̂v is residual and θ̂1,0,0 is the value of

estimated cepstrum at the origin under H1.

The spatial stationarity is assumed for the comparison of

ST-LRT model and GLM. After spatial smoothing and tem-

poral filtering are performed in (3), we obtain the equation :

ȳt,v = ξ̄T
t f̄v + η̄t,v, where, e.g., ȳt,v � φt ∗ (KG

v ∗s yt,v), KG
v

is a Gaussian amplitude kernel and φt is a temporal filter. For

OLS, one minimizes the following function J to find ̂̄fv :

J =
∑
t,v

(ȳt,v − ξ̄T
t f̄v)

2
=

∑
k,l

|ỹk,l − ξ̃T
k f̃l|2|φ̃k|2|K̃G

l |2
T · M ,

(22)
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where φ̃k and K̃G
l are the DFTs of φt and KG

v . Note that

linear convolution is approximated by circular one with zero

padding. If we compare this with JR,L, the simplest inter-

pretation of φ̃k and K̃G
l is that they are whitening operators.

Thus, |φ̃k|2 and |K̃G
l |2 take the place of 1/F̂1,k,l in (20). If

φt is a temporal whitening filter, following the same idea to

obtain (21) from JR,L, we arrive at an AIC map for GLM,

AICGLM
v =

∑
k

log ̂̄F k − 2T · θG
0 +

∑
t

ē2
t,v +

2(np + L)
M

,

(23)

where θG
0 is the value of the cepstrum of KG

v at the origin and

ēt,v � ȳt,v − ξ̄T
t

̂̄fv . For AR(1) fitting of η̄t,v , we have the

number of parameters np = 2 and F̄k = σ̄2

|1−ϕe−jωk |2 , where

σ̄2 = var(η̄t,v) and ϕ is a common AR(1) coefficient.

5. APPLICATION TO A REAL DATA

We apply the developed ST-LRT to a real dataset from AFNI

homepage (http://afni.nimh.nih.gov/afni/). A human subject

performs right-hand sequential finger-thumb opposition in the

presence of a given motor stimulus. The experiment is done

under 3T MRI scanner and TR is 2 secs. For simplicity, we

consider a two-dimensional axial slice where motor responses

are expected. T = 99, M = 632, and voxels have the size

of 3.125× 3.125× 5mm3. A spatial mask to remove signals

from the outside of brain and a spatiotemporal taper (Tukey-

Hanning window) to reduce the edge effect are applied to the

original data on the motor slice.

AIC maps and unthresholded activation maps associated

with the motor responses are given on Fig.1. For ST-LRT,

Laguerre functions whose orders are up to 3 are used in the

modeling of st,v . For discussions about thresholding of ST-

LRT with a given significance level, refer to the companion

paper of [9]. For GLM, the FWHM of Gaussian amplitude

kernel is set as 2.5 times of the voxel size. On AIC maps, AIC

values for ST-LRT model are substantially lower than those

for GLM, indicating ST-LRT model is on average closer to the

unknown underlying true model than GLM. Activation map

from ST-LRT shows sharper or more well-defined activated

regions than that from GLM in the whole brain. In addition,

in the right hemisphere, the new ST-LRT provides a stronger

spot than does GLM, suggesting activation. It turns out that a

model by BIC shows the similar results to those by AIC.

6. CONCLUSION

With the parametric cepstrum, we implemented the recently

developed ST-LRT. The estimation of spatial and temporal

spectra induced adjustment terms in the original ST-LRT. The

parametric cepstrum allowed dramatic reduction of computa-

tion in the model fitting. A method for model comparison and

model order selection was suggested using AIC. The obtained
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Fig. 1. AIC Maps and Activation Maps.

activation map from ST-LRT showed well-defined activation

regions. The AIC map indicated that ST-LRT model was on

average closer to the underlying truth than GLM.
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