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ABSTRACT

We present a method for removing environmental noise

from physiological recordings such as Magnetoencephalogra-

phy (MEG) for which noise-sensitive reference channels are

available. Sensor signals are projected on a subspace spanned

by the reference channels augmented by time-shifted and/or

nonlinearly transformed versions of the same, and the pro-

jections are removed to obtain “clean” sensor signals. The

method compensates for scalar, convolutional or non-linear

mismatches between sensor and reference channels by syn-

thesizing, for each reference/sensor pair, a filter that is opti-

mal in a least-squares sense for removal of the artifact. The

method was tested with synthetic and real MEG data, typ-

ically removing up to 98% of noise variance. It offers an

alternative to bulky and costly magnetic shielding (multiple

layers of aluminium and mu-metal) for present scientific and

medical applications and future developments such as brain-

machine interfaces (BMI).

Index Terms— Magnetoencephalography, Bioelectric po-

tentials, Biomedical imaging, Interference suppression

1. INTRODUCTION

In magnetoencephalography (MEG), superconducting quan-

tum interference device (SQUID) sensors placed outside the

skull measure magnetic fields produced by brain activity [2].

Brain fields are extremely small, several orders of magnitude

below environmental noise produced by sources such as elec-

tric power lines and mechanical elevators. Despite measures

such as magnetic and electromagnetic shielding (multiple lay-

ers of aluminium and mu-metal), active noise field cancella-

tion, and the use of gradiometers which are more sensitive to

the inhomogenous field produced by proximal sources than

the homogenous field of more distant noise sources [3, 4],

recorded signals may be dominated by noise. Shielding, in

particular, is expensive and bulky, and this is an obstacle to

the deployment of MEG for scientific and medical applica-

tions, or the development of practical brain-machine inter-

faces (BMI).

Several noise-reduction techniques use reference sensors

that respond primarily to noise sources to estimate their con-

tribution to brain sensors, and remove that contribution. Our

method follows the same spirit but with an original twist:

sensor channels are augmented by various transforms (delays

and non-linearity) that allow it to handle convolutive and/or

nonlinear mismatches between sensors. The examples that

we give to illustrate the method are from an MEG machine

equipped with three magnetometer sensors sensitive to the

homogenous field of distant sources. The method is however

of use for other MEG configurations, and for other sensitive

physiological recording techniques such as EEG, local field

potentials, single-units, etc. for which environmental noise is

a problem.

The method is a generalization of Principal Component

Analysis (PCA). PCA is a linear transformation that “rotates”

a set of data of dimension K, expressing each as a sum of K
one-dimensional components (“principal components”) that

are (a) mutually orthogonal to each other, and (b) ordered

in terms of variance from large to small. The total variance

(or power) is conserved. Components are ordered with de-

creasing variance, and therefore as much variance as possible

is “packed” into the first components. If the data set is of

lower dimensionality than the space, i.e. it fits within a “hy-

perplane”, later components may be discarded without loss.

PCA is thus useful for dimensionality reduction. PCA is often

used as an ingredient in denoising algorithms [5, 6, 7, 8, 9].

Here we use PCA in combination with subspace projection

to synthesize, for each reference/target channel pair, a filter

that maximizes the proportion of noise that can be suppressed.

The goal is to provide a simple and effective means for reduc-

ing the impact of environmental noise on data recorded from

MEG or other noise-sensitive techniques.

2. SIGNAL MODEL

Two sets of signals are observed: data sensor signals s(t) =
[s1(t), · · · , sK(t)]� and noise reference signals r(t) = [r1(t),
· · · , rJ(t)]�. The data sensor signals reflect a combination of

brain activity and environmental noise:

s(t) = sB(t) + sE(t) (1)

whereas the J reference sensors reflect only noise. We ap-

proximate this situation using three signal models of increas-
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ing complexity. In a first model, the multiple sources of envi-

ronmental noise contribute to both sets of sensors via scalar
mixing matrices:

sE(t) = An(t) (2)

r(t) = Bn(t)

where A = [akl] and B = [bjl] are the mixing matrices and

n(t) = [n1(t), · · · , nL(t)]� represents the L noise sources.

The brain term, sB(t), also depends on multiple sources within

the brain but the details of this dependency do not interest us

here. Scalar mixing is not an unreasonable assumption, given

that the propagation of magnetic fields is practically instan-

taneous. A second model assumes a similar dependency of

sensor signals on noise sources, but via convolutional mixing

matrices. Assuming convolution instead of multiplication in

Eq. 2, each element akl or bjl of the mixing matrices A or B
now represents an impulse response, e.g.:

rj(t) = (bjl ∗ nl)(t) (3)

This second model can handle the effects of hardware filters

within sensor channels (e.g. high-pass, notch, or antialias-

ing), as well as any spectral distortion or time shift that might

occur within the sensor itself. The third model extends the

second by allowing noise components to undergo non-linear

transformations before and/or after mixing:

sE(t) = A[n(t)] (4)

r(t) = B[n(t)]

where A and B are non-linear functions with memory (fil-

ters). This third model allows for non-linearities in the mixing

mechanism, and/or in the sensors.

3. ALGORITHMS AND IMPLEMENTATION

Our goal is to find a function F to apply to the reference sig-

nals so that F [r(t)] is as close as possible to sE(t) so that

by subtraction we obtain the best possible measurement of

sB(t):

˜sB(t) = s(t)− F [r(t)]. (5)

For the first model the solution is to simply project each target

signal on the subspace spanned by the reference sensors. This

involves finding a matrix C = [ckj ] such that the linear com-

bination Cr(t) of reference signals best approximates s(t) in

a least-squares sense. Several denoising methods proceed in

this way, for example CALM [10].

For the second model (convolutive mixing), the previous

solution does not work because a linear combination cannot

effectively mimick or reverse the effects of convolutive mix-

ing. We address this problem with the following algorithm

(dubbed TSPCA). First, the reference channels r(t) are time-

shifted by a series of multiples of the sampling period: r(t +

n), n = −N/2, . . . , N/2. Second, the set of time shifted ref-

erences is orthogonalized by applying PCA (or other orthog-

onalization procedure) to obtain an orthogonal base. Compo-

nents with norm below some threshold are discarded at this

point to avoid numerical problems in the next step. Third,

each target signal is projected on this base, and the projection

removed. The result is a “clean” sensor signal. What hap-

pens, in effect, is that the combination of orthogonalization

and projection forms a linear combination of time-shifted ref-

erence signals. This is the same as a N -tap FIR filter. Its

coefficients are optimal, in a least squares sense, to make the

reference as similar as possible to the target, and thus reverse

the effects of any convolutive distortion that might differen-

tially affect noise along each channel.

To address the third model (convolutive and nonlinear mix-

ing), the algorithm is extended by augmenting the set of time-

shifted references by non-linear transforms of the same. There

are two practical approaches to choosing the non-linear trans-

forms to be included. If the nature of distortions is known

before-hand, the corresponding transforms (or their inverses

if appropriate) can be included. If the nature of the distortions

is not known, a selected set of nonlinearities can be provided.

A linear combination of non-linear transformed reference sig-

nals can mimick a wide class of linear and non-linear distor-

tions [11]. To the degree that this class includes or approxi-

mates the distortion actually involved, noise-related power in

the target signals is reduced.

The algorithms were implemented in Matlab. Standard

routines for PCA (e.g. ‘svd’) that operate in memory are lim-

ited in the size of the data that they can process. To lift the

limit, processing is applied in several passes. The first pass

calculates the covariance matrix, the second rotates and cal-

culates the projection matrix, the third pass removes the pro-

jection from the data.

4. EVALUATION

The algorithms were tested with real and synthetic MEG data.

Magnetic signals were recorded from a 160-channel, whole-

head MEG system with 157 axial gradiometers sensitive to

nearby sources (brain) and 3 magnetometers sensitive to dis-

tant environmental sources (KIT, Kanazawa, Japan). The sys-

tem is situated within a magnetically shielded room, and sen-

sor signals are typically filtered in hardware to reduce residual

DC and very low frequency fields (highpass 1 Hz) and power

line noise (notch at 60 Hz) before digitizing. Despite these

precautions, when recording from the brain typically about

90% of the recorded variance is due to environmental noise.

The situation is illustrated by the red plots in Fig. 1 that show

the power spectrum averaged over MEG channels. In the ab-

sence of a subject (Fig. 1 (a) and (b), red) the activity reflects

mainly environmental noise. The spectrum is dominated by

a broad peak below 10 Hz, several narrower peaks at inter-

mediate frequencies (10-40 Hz) and a few sharp components
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at higher frequencies (≥120 Hz). Activity recorded with a

subject in the machine (Fig. 1 (c), red) is dominated by the

same components, and brain-related activity is therefore hard

to distinguish (compare (b) and (c)).
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Fig. 1. (a) Power spectrum of MEG response before (red)

and after (blue) denoising, averaged over all channels. There

was no subject in the machine. (b) Same as (a) expanded. (c)

Same as (b) with a subject in the machine.

The blue plots in Fig. 1 show the results of applying the

TSPCA algorithm with N = 200. For data recorded with no

subject (Fig. 1 (a) and (b)) the peaks at low, medium and high

frequencies are suppressed. Overall, the RMS power is re-

duced by 98%. The result is that, in the presence of a subject,

brain activity emerges more clearly (Fig. 1 (c)). Assuming

that brain and noise activity are decorrelated, the SNR can

be estimated approximately by comparing activity with and

without a subject. After denoising, the SNR is better than 15

dB over the 0-20 Hz range important for brain activity, with a

peak of more than 40 dB at 9 Hz (not shown).
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Fig. 2. Percentage of residual power after TSPCA as a func-

tion of the number of taps N . Also shown are figures for two

other algorithms: CALM [10] and Fast-LMS [12]

.

The effectiveness of TSPCA stems from its ability to com-

pensate for a convolutional mismatch between target and ref-

erence channels, as illustrated by Fig. 2. For N = 1 the al-

gorithm degenerates to simple scalar denoising, and is in fact

equivalent to the CALM algorithm (circle). With N = 200,

TSPCA offers an order of magnitude less noise than CALM.

It surpasses also the Fast-LMS algorithm of [12].

An important concern of scientists and clinicians is to

make sure that processing (such as denoising) does not distort

components of interest. MSPCA involves filtering but, as Eq.

5 shows, it is applied only to the reference and not the target

signals. It is true that targets are stripped of any components

that happen to be colinear with the subspace spanned by the

(time-shifted) reference channels. However, if brain activity

is not correlated with environmental noise, these components

should be small. This conclusion was tested by simulating the

denoising situation with synthetic data. For convenience we

used gaussian noise (uncorrelated across channels) as a “tar-

get” signal. For “noise” we used activity recorded from an

MEG in the absence of a subject, stripped of the residual af-

ter denoising (2% of its variance). This “noise” is essentially

similar to real environmental noise, but with the convenient

property that denoising removes it perfectly, so that target dis-

tortion is easier to assess. As evident in Fig. 3 (compare blue

and green traces), the only deleterious effect of denoising is

a very slight reduction in amplitude. Simulations show that

the amplitude loss is proportional to N (not shown), suggest-

ing that the effect is the result of increased overfitting as N
increases. TSPCA does not significantly distort the target sig-

nals.
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Fig. 3. Effect of denoising on target illustrated with syn-

thetic data. Blue: power spectrum of synthetic “target” before

adding noise. Red: power spectrum of “noise”. Green: power

spectrum of target after denoising (N = 200). Note that neg-

ative ordinates are expanded (the 0 dB level is arbitrary).

.

TSPCA addresses signal model 2 (convolutive mixing).

To address model 3 (convolutive and non-linear), the same

algorithm can be extended by including a set of nonlinear

transforms of the delayed reference channels. A wide class

of nonlinearities can be approximated as weighted sums of a

much smaller class of nonlinear functions such as polynomi-

als [11]. Including just a few appropriately-chosen nonlinear

transforms is expected to improve the fit of the noise compo-

nent of target channels to their projection on the reference-

derived subspace. For real MEG data, it turns out that this

does not significantly reduce noise variance, presumably be-

cause the mixing and transduction process is highly linear.
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However other application scenarios might involve some de-

gree of nonlinearity. To test the effectiveness of the algorithm

in the non-linear case, we synthesized artificial data for which

the noise components affecting the target (sE(t)) and those

observable from the reference (r(t)) were related by a non-

linear function (square root). In this case, standard (linear)

TSPCA is ineffective. However, appending a set of non-linear

transformed channels (powers) improves noise suppression;

and indeed applying the same nonlinearity (square root) al-

lows noise suppression as effective as in the linear case (not

shown).

5. DISCUSSION AND CONCLUSION

The TSPCA algorithm is remarkably effective in removing

environmental magnetic noise from MEG recordings, and it

seems that the same method should work well for other phys-

iological recording techniques, such as EEG, local field po-

tentials, etc. A necessary condition for applying TSPCA is

the availability of reference channels sensitive only to noise.

Other algorithms exist that remove noise based on such chan-

nels. The original feature of TSPCA is that it can handle a

convolutive mismatch between target and reference channels,

as well as various forms of nonlinearity. This last feature

is tested only superficially here: future work will attempt to

characterize these nonlinear-denoising capabilities in greater

depth. The ability to effectively suppress high-levels of envi-

ronmental noise is crucial to the deployment of MEG systems

in health applications, as high-quality shielding is expensive

and bulky. For a given environment it can lead to better-

quality data, and for scientific investigations it reduces the

need for long experiments, involving multiple presentation of

the same stimulus. Noise immunity is also an important step

towards practical brain-machine interfaces.
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