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ABSTRACT 

The diagnostic value of a medical image after it has been 
decompressed is a very practical measure of the image 
quality and the compression method.  A computational 
observer can be used to make decisions based on an image 
and thus can provide an assessment of diagnostic value.  
This paper provides a closed-form estimate of the 
channelized Hotelling observer's (CHO) output.  In 
medical applications, CHO has been used successfully to 
predict human observer performance and to evaluate 
image quality for detection tasks in various backgrounds. 
To date, it has been used only empirically – i.e., on a set of 
images – to evaluate compressed image quality.  Using a 
representation of compression noise this paper derives in 
closed-form the corresponding CHO test statistics and 
performance. The performance (as measured by the 
receiver operating characteristic [ROC]) is verified using 
decompressed JPEG lumpy-background images. The 
verification results show that the derived ROCs predict the 
estimated ROCs very well.  

Index Terms — Image coding, quantization, 
decision-making, image reconstruction, visual system

1. INTRODUCTION 

Storage and transmission of large amounts of digitized 
medical data often requires compression. Since lossless 
compression generally can yield only a 2:1 to 3:1 
compression ratio, lossy image compression must be used 
in some applications. Image compression algorithms, such 
as JPEG and JPEG 2000, are employed in medical 
products already. No standard exists, however, for 
measurement of the quality of decompressed images. It has 
become an important research area to estimate the effect of 
image compression on the accuracy of clinical diagnosis. 
The most commonly used measurements of image quality, 
such as mean square error (MSE) or peak signal to noise 
ratio (PSNR), are not adequate for medical images [1]. 
Medical image quality can better be measured by human 
performance in visual tasks that are relevant to clinical 
diagnosis. The standard method of evaluating diagnostic 
methods [2] is a receiver operating characteristic (ROC) 

study, which is time-consuming and costly because it 
requires a large number of human observations. This is 
compounded when the set of parameters changes [1].  

Computer-model observers are algorithms that 
attempt to predict human visual performance in noisy 
images and might represent the desired metric of image 
quality when the diagnostic decision involves a human 
observer and a visual task [3]. Among all the model 
observers, the ideal observer sets an upper bound to the 
performance of any observer, including the human; it 
requires knowledge of the PDF of the background noise. 
The channelized Hotelling observer is one of the most 
efficient and practical algorithms for prediction of human 
performance [3,4]; it requires knowledge of the first and 
second moments of the background noise. Though model 
observers have been used to estimate decompressed image 
quality experimentally, there are no closed-form results so 
far [1,5,6]. Ideally, a closed-form quality measure for 
decompressed images would allow the user to compare 
various compression algorithms and parameter sets 
without extensive image samples. The measure would also 
provide a way to find optimum compression schemes or 
parameter sets for clinical diagnostic tasks.  

This paper derives the closed-form CHO on 
decompressed images, shows the mathematical CHO 
expression for JPEG decompressed lumpy-background 
images, presents the verification results, and draws 
conclusions.   

2. CHANNELIZED HOTELLING OBSERVER ON 
DECOMPRESSED IMAGES 

Image quality's effect has long been assessed by human-
observer performance on two-alternative forced-choice 
(2AFC) experiments with simultaneous, side-by-side 
presentation of the two alternative image fields [4,6].  One 
contains noise only and the other contains signal plus 
noise.  The observer is required to decide which image 
contains the signal (see Fig. 1).  Channelized Hotelling 
model observers are computational task-performance-
based image quality assessment techniques.  This paper 
uses CHO to simulate human behavior on 2AFC data. 

A 2AFC can be interpreted as two-class hypothesis 
test: one hypothesis is an image without signal, and the 
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other is an image with signal. Model observers consider an 
N×N image as an N2×1 column vector. If S

r

 and N
r

are
defined as signal and noise vectors respectively, then the 
observed image X

r

can be defined as 
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Figure 1.  An Example of data for 2AFC Experiments 

A model observer performs a detection task by 
computing a test statistic )(g

rλ  and comparing it with a 

threshold t to decide which hypothesis is accepted. The 
CHO uses a set of spatial frequency channels that are 
believed to exist in the human visual system in detection 
tasks [7, 8, 9]. Its detection process operates on the 
channel outputs, which have the additional benefit of 
reducing the dimensionality of the problem, making the 
CHO very computationally effective. The CHO test 
statistic of the original image is  
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where )(Cov N
r

 is the covariance matrix of background 

images. The performance of model observers can be 
represented by various figures of merit, such as signal to 
noise ratio (SNR), area under the ROC curve (AUC), 
detectability, etc. These are all measures that express the 
tradeoff between true- and false-positives, and it is 
possible to convert from one to the other.This paper uses 
AUC as the figure of merit for CHO performance. The 
AUC can be calculated by  
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where d  is detectability, i.e.,  
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where iλ and 2
iσ are mean and variance of test statistics 

for hypothesis i, and i={1,2}. They are defined as  
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where )|( iTP g
r  is the conditional PDF of hypothesis i. The 

CHO detectability can be derived as  
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If the decompressed image of image X
r

 is defined as rX
r

,
then it can be written as 
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where R
r

 is compression noise. We have previously 
derived a closed-form expression for R

r

 and also shown 
that it has a normal distribution [10]. Since compression 
noise R

r

 and background noise N
r

 arise from different 
sources, this paper assumes that they are independent. If 
the total noise is defined as  
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then its mean vector and covariance matrix are  
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where i = 1, 2. 
 If the original image has signal and background known 

exactly (SKE/BKE), then the total noise statistics of the 
decompressed image are known for a given compression 
algorithm. The signal can be the original or the 
decompressed signal for 2AFC experiments on 

reconstructed images. If S
r

 is the signal in 2AFC, then we 
can show  that the test statistic of CHO on reconstructed 
images is [11]   
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where rX
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is reconstructed images and  
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The detectability of CHO on reconstructed images is  
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3. DECOMPRESSED JPEG LUMPY 
BACKGROUND IMAGES 

Lumpy backgrounds are Gaussian blobs (structured noise) 
at random positions in the image. Due to their 
mathematical tractability and simplicity, such computer-
simulated backgrounds that visually appear similar to real 
image backgrounds are widely used in medical image 
quality assessments [12]. Lumpy backgrounds are 
generated by filtering uncorrelated Gaussian images. The 
original images used in this paper are generated by the 
following steps: first, generate uncorrelated Gaussian 
images with zero mean; then calculate 2D-FFT of the 
generated images; multiply the Fourier coefficients by 
low-pass filter coefficients pixel by pixel. Finally, 
calculate the 2D inverse Fourier transform on filtered 
Fourier coefficients and take the real parts as lumpy 
background images.  The lumpy background can be 
expressed in the following mathematical form: 
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where p is the power level of uncorrelated Gaussian noise, 
F and F-1 are respectively the forward and inverse Fourier 
transform matrix in a 1D representation, and W is a 
diagonal matrix whose diagonal elements are filter 
coefficients. N

r

 is uncorrelated Gaussian noise images 
with zero means and unit covariance matrices. X

r

 is lumpy 
background images. We can show that X

r

 is jointly 
Gaussian distributed [10]. Its mean is zero, and its 
covariance matrix is    
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The left and right images of Figure 1 are the lumpy 
backgrounds with/without signal respectively. The mean 
vector and covariance matrices of the decompressed JPEG 
lumpy background can be derived from the closed-form 
compression noise statistics [10]. The JPEG image 
compression algorithm is DCT-based transform coding 
with uniform partition. Its block size is 8×8. Uniform 
scalar quantization is used for the quantization of the 
transform coefficients. A quantization table (QT) is 
transmitted as part of the encoded bit stream though it 
provides a default QT. The same QT will be used in all the 
blocks. The mean vector and covariance matrix of JPEG 
compression noise are  
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respectively, where Qm
r
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and )(Cov Q
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are mean vector and 

covariance matrix of JPEG quantization noise. A is JPEG 
transform matrix which is defined by  
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where Nb is the number of 8×8 in the original images; A64

is a 1-D transform matrix of 8×8 2-D DCTs; its (m,n) 
element can be calculated by  
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where j,k={0,1,…,7}, where  m, n={0, 1,…,63) and k, l, o,
p = {0,1,…,7}.

The mean vector and covariance matrix of JPEG 
quantization noise are functions of the marginal and 
pairwise PDFs of DCT coefficients of lumpy background 
images. The calculation can be found in [10].                                          

4. SIMULATION RESULTS 

The derived CHO performance is verified using lumpy 
background images with a circle and a Gaussian disk, each 
in a set of 2AFC experiments. The variable p in (17) is 
chosen as 128 for lumpy background generation. The size 
of the lumpy-background images is chosen as 32×32. The 
estimated ROC and AUCs were calculated using 2048 
images. 

The derived ROC and AUC on original lumpy 
background images are calculated by (2), (4) and (8) while 
the derived ROC and AUC on JPEG decompressed images 
are calculated by (13), (14) and (15). Since the signal used 
in the simulation is symmetrical, and background images 
are smooth, Laguerre-Gauss functions are chosen to define 
the channels in CHO simulation. The nth-order Laguerre-
Gauss functions are defined as 
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where a is width and Ln is nth-order Laguerre polynomial, 
defined as 
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From left to right of Figure 2 shows first five 32×32 
Laguerre-Gauss templates that are used in the simulation. 
The channel matrix T is constructed by putting the above 5 
templates into column vectors and combining, yielding a 
1024×5 matrix for T. 

Table 1 shows derived and estimated AUCs on 
original and decompressed JPEG images. In Table 1 
C10A10 is a circle signal with radius 10 and amplitude 10. 
Its derived and estimated AUCs on original images are 
0.966. The derived and estimated AUCs on decompressed 
images against original signal in 2AFC tests are 0.947 and 
0.945 respectively; they become 0.958 when the 
decompressed signal is used in 2AFC tests. Table 1 also 
lists AUCs for circle signal C10A5 and Gaussian signal 
G3A10 (standard deviation =3 and amplitude A=10) and 
G10A20 ( =10 and A=20). All the cases show that the 
derived AUCs predict the corresponding estimated AUCs 
very well. Figure 3 shows CHO ROCs on original and 
decompressed JPEG lumpy backgrounds with a circle 
signal. In Figure 3, the solid line and star signs are the 
derived and estimated ROCs on original images. The 
dashed line and plus signs are the derived and estimated 
ROCs on decompressed images against original signal, 
while the dotted line and circle signs are the derived and 
estimated ROCs on decompressed images against 
decompressed signals. All the cases show that the derived 
and estimated ROCs are very close.  

Figure 2. Laguerre-Gauss Channel Profile 
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Figure 3. ROC Curves of CHO on Original and JPEG 
Lumpy Background Images with Circle Signal C10A5 

Table 1. AUCs of Channelized Hotelling Observer on 
Original and Reconstructed Images 

Original 
Images 

Reconstructed JPEG Images Images/ 
Signal 

Original signal Original signal Reconstructed 
signal 

Signal DER. EST. DER. EST. DER. EST. 

C10A10 0.966 0.966 0.947   0.945   0.958   0.958
C10A5     0.930 0.932 0.918 0.916 0.779 0.778 
G3A20 0.966 0.966 0.947 0.945 0.958 0.958 
G10A20 0.989 0.989   0.990   0.989   0.987   0.987

5. CONCLUSIONS 

Many medical image quality assessment studies show 
that model-observer based image quality measures can 
effectively predict human performance on diagnostic tasks. 
Experimental results have also shown that model-
observers can predict human performance on 
decompressed images as well.  In both cases, model 
observers reduce or eliminated the need for costly and 
lengthy human-observer studies.  The model observers do, 
however, require extensive examination of variations in 
data type, parameters, etc. 

Based on the derived compression noise statistics, this 
paper derives the closed-form CHO on decompressed 
images. The detectability, an image quality measure, is 
shown, not unexpectedly, to be an inverse function of the 
covariance matrix of compression noise; i.e., detectability 
will decrease as compression noise increases for both ideal 
and channelized Hotelling observers.   

The real benefit of these new closed-form image 
quality measures is that they allow users to calculate the 
performance of image compression algorithms without 
going through compression and decompression processes 

on extensive image samples and various parameter sets. It 
also is a theoretical approach that enables the user to 
choose compression parameters that predictably satisfy the 
tradeoff between the sizes of the lossily compressed image 
and the preservation of diagnostic information. Moreover, 
such closed-form quality measures of decompressed 
images provide a way to optimize compression algorithms 
subject to a model observer performance criterion. It also 
provides a theoretical foundation for efforts to create a 
model observer for decompressed images. 
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