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ABSTRACT 

 

Large intersubject variability is a well-described feature of fMRI 

studies, making inter-group inference, of critical importance for 

biological interpretation, difficult. Therefore, traditional 

approaches involve spatially transforming the data of each 

subject and heavily spatially smoothing the data. Here we 

propose an alternate method: after first defining individually-

specific Regions of Interest (ROIs) of each subject, we utilize 

Local Linear Discriminant Analysis (LLDA) to jointly optimize 

the individually-specific and group linear combinations of ROIs 

that maximally discriminates between groups characterized by 

either disease status or task.  The proposed method was applied 

to fMRI data recorded from eight normal subjects performing a 

motor task, and it was shown to successfully detect activation in 

multiple cortical and subcortical structures that were not present 

when the data were traditionally analyzed by warping the data to 

a common space. We suggest that the proposed method for 

group fMRI data analysis may be more suitable when examining 

co-activation in small subcortical regions susceptible to mis-

registration, or examining older or neurological patient 

populations. 

Index Terms— Discriminant Analysis, FMRI, Group 

Analysis, Regions of Interest 

 

1. INTRODUCTION 

Functional magnetic resonance imaging (fMRI) has been widely 

applied for studying brain activity, as it a non-invasive method 

that does not require the injection of intravenous contrast.  

Although  the analysis of single-subject fMRI studies has been 

well investigated, the modeling and inference of fMRI data from 

groups of subjects remains a challenge due to individual 

differences in brain shape and differences in the magnitude and 

spatial distributions of activation patterns. Nevertheless, group 

analysis of fMRI is of critical importance for proper biological 

interpretation of the results.  

Group fMRI analyses are usually done using a Summary 

Statistics method, a two-staged approach: first individual models 

are fit to each subject, and then a second level is applied to make 

group inferences [2] by using a multivariate regression analysis. 

For the voxel-based analysis, the multi-subject fMRI data need 

to be voxel-aligned first, where data are spatially transformed to 

a common space, e.g. the atlas by Talaraich [1], to minimize 

inter-subject differences.  Different implementations were 

proposed to implement the above analysis in a practical way, 

such as the popular SPM2 package [3, 4]. However, there are a 

number of shortcomings with the voxel-based approaches, 

including the possibilities of mis-registration and the lack of 

explicit modeling interactions between brain regions. Therefore, 

we are interested in the regions-of-interest (ROI)-based analysis, 

which does not require rigid spatial transformation.  

Our goal is to find which combination of brain regions is 

maximally different between tasks. Thus, in contrast to the 

above two-stage approach, it is desirable to jointly optimize the 

individual statistical model and the overall models 

simultaneously, and there is a need for a multivariate, 

discriminant analysis approach that works at the ROI level, as 

indicated in our previous work [5].  

In some cases the magnitude of inter-subject differences in 

fMRI activation can exceed the task-specific differences within 

individuals. To deal with this situation, yet still maintaining the 

benefits of linear discriminant analysis, we propose using a 

recently developed Local Linear Discriminant Analysis (LLDA), 

initially designed to solve a somewhat different, but still related, 

problem [6]: finding a classifier that was sensitive to static 

images from different subjects, yet insensitive to different poses 

from the same subject. We therefore propose using LLDA to 

sensitively discriminate between task-dependent ROI patterns of 

activity, while being relatively robust to the differences between 

subjects. 

In the paper, we apply the proposed method to fMRI data 

derived from a motor paradigm that would be expected to 

activate cortical and subcortical structures. We show that the 

proposed method, consistent with prior neuroscience knowledge 

derived from animal models, detects significant group activation 

in subcortical structures that was not present when the same 

group of data were analyzed using standard methods utilizing 

spatial normalization. 

 

2. METHODS 

2.1. FMRI Data Pre-processing 

The fMRI data were preprocessed for each individual 

independently for motion correction, and slice time realignment 

using standard fMRI software (SPM 2). The data were not 

spatially smoothed and were not spatially transformed to a 

common space.  Eight ROIs were defined bilaterally (total = 16 

ROIs) and manually traced on the T1-weighted structural images 

for each subject based on anatomical sulcal landmarks and with 

the guidance of a brain atlas [7]: anterior cingulate cortex 

(ACC), supplementary motor areas (SMA), primary motor 

cortex (PMC), dorsal lateral prefrontal cortex (DLPFC), caudate 

(Caud), globus pallidus/putamen (GP/PUT), thalamus, and 

lateral cerebellum hemisphere. 

The proposed method is a post-processing method that 

utilizes pre-computed statistical parametric maps. To ensure that 

any benefits from the proposed method were not due to the 
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methods of obtaining the statistical parametric maps themselves, 

we utilized simple t-tests based on the BOLD signal changes in 

all runs between a task and rest (e.g., right hand IG vs. rest). The 

voxels in the statistical maps were then labeled by the 

appropriate ROIs drawn on the anatomical image. The labeled 

statistic parametric maps for different conditions (e.g. Right 

Hand IG vs. rest contrasted to Right EG vs rest) were then 

contrasted with LLDA. 

Then similar to [5], using the notation ),,( vrst = 

),,( voxelregionsubjectt , for each subject, we randomly 

select a voxel from within each of P ROIs, and assemble the 

result into a column feature vector., e.g. for subject #1: 

( ) ( ) ( )( )PvPtvtvtt ,,1,,2,1,,1,1),1( 21=v ,                 (1) 

where vi is the vi-th voxel in the ith ROI, and i = 1,2,…. P. This 

random selection process will be repeated a number of times, 

say B times, and then the mean of the feature vectors, )1(kt , 

is taken to ensure the data can be modeled as multivariate 

Gaussian. The above process is repeated (k = 1,2,…M) to 

perform bootstrap resampling. All feature vectors from the first 

subject are then collected:  

[ ])1(...,),1(),1( 211 MF ttt= ,                  (2) 

where 1F  is P by M. This process is then repeated for all S 

subjects in the group, and the P-variate vectors are assembled 

into a P by S x M matrix, X,  

[ ]SFFFX ...,,, 21= .                             (3) 

This whole process is repeated for either another group of 

subjects doing the same task or the same subjects doing a 

different task, (e.g., group '2') to provide another P by S x M 

matrix. Now p-variate linear analyses can now be performed on 

X [5].  

  

2.2. Modified LLDA 

The underlying idea of LLDA is to solve multi-class nonlinear 

classification problems by using a set of locally linear 

transformations. The overarching assumption of LLDA is that 

global nonlinear data structures are, in many cases, locally linear 

and these local structures can then be linearly aligned. The 

LLDA linearly transforms each local structure (called a 

“cluster”) to a common vector space with a transformation 

matrix and optimizes the discriminant between different classes 

globally in the common space. 

Consider the resampled t-statistic matrices 1X  and 2X  in 

a study involving K subjects and two tasks. We regard the data 

of each subject as a local linear structure /cluster and try to find 

a transformation matrix for it such that the transformed data of 

all the subjects are globally optimally discriminated between the 

tasks/classes. Let x  be a column of either 1X  or 2X  and it 

belongs to a subject },...,2,1{ Kk ∈  and a task }2,1{∈c .  

Notations kx∈  and cx∈  will respectively mean that x  

belongs to subject k and task c. Next, x  is transformed to y in 

the common vector space with Eq. (12) 

)(UT

kk mxy •−=                   (4) 
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                  (5) 

where N is the dimension of the transformed space. 

[ ]kNknkk u,,u...,,uU 1 K=  is the N × N orthogonal 

transformation matrix of cluster k with knu  being its nth base, 

km•  is the mean vector of cluster k, and kN•  is number of 

x’s belonging to cluster k. The mean of each cluster is removed 

in the transformation. 

The discriminant after transformation is scored with Eq. (6): 
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where B
~

and W
~

 are the between-class and within-class 

scatter matrices in the common space. The transformed scatter 

matrices are given as: 
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where 0
1~ == ∑

x

y
N

m  and ∑
∈•
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1~

  are the 

global mean and the mean of class c, respectively, after the 

transformation, and •cN  is the number of x’s belonging to 

class c.  Because the mean of a cluster is removed in the 

transformation, in our casem~ equals 0. B
~

 and W
~

 can also be 

written in matrix form for analysis.  

LLDA attempts to maximize J in (6) under the orthogonality 

normal constraint, IT

k

T

kk == UUUU . The constrained 

nonlinear programming is solved by successively calculating the 

bases of kU  from the subspace orthogonal to the already 

calculated bases. Unlike the original LLDA description in [6], 

we propose using an overall optimization procedure using two 

routines, a “subspace” routine, and a “one-base” LLDA routine, 

which we found more robust and reliable for fMRI data. The 

“subspace” routine creates subspaces orthogonal to the already 

calculated bases )1(1 uu −nkk L  and calculates knu  in the 

subspace by calling the “one-base” which solves a one-base 

LLDA problem. The “subspace” routine repeats iteratively until 

all the bases are calculated. The “one-base” routine solves a one-
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base LLDA problem that is similar to LLDA but with a different 

constraint 1UU =k

T

k  where kU  is just a column vector and 

only subject to the normal constraint. The procedure proposed 

here has several advantages over the original one, in terms of 

computational cost and stable convergence. Detail derivations 

are omitted here due to limited space limit.  

In contrast to the original classification problem proposed 

for LLDA, our goal is to further determine the linear 

combination of ROIs that maximally discriminate between 

groups. A straightforward way is to use the average of Uk’s. 

However, as pointed out by Kherif et al [8], averaging of fMRI 

data across individuals is only prudent when the mean is a good 

representation of the group. They suggested a way to look for 

selecting subjects with “similar” activation patterns. In the 

current situation, since the activation statistics from each 

individual have been transformed to a common vector space 

(defined by the yi’s), we can now selectively weight each subject 

so that the transformed yi’s are maximally discriminable in the 

transformed vector space. Specifically, we can weight each 

subject, k, by a small positive factor αi, 
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where k is the subject and there are K total subjects and the 

means of the y’s are maximally discriminable by, e.g., a standard 

t-test. The αi’s can then be estimated by constrained non-linear 

optimization methods.  

Thus, the overall transformation describing the linear 

combination of ROIs that maximally discriminate between 

groups is then estimated by: 

∑
=

=
K

k

kk

1

UU α                  (10) 

To determine the significance of the elements of U , we can 

estimate one element at a time via the Kolomogorov-Smirnov 

(KS) test to determine whether the distribution of transformed 

data y  is altered by elimination of that element [9]. This 

nonparametric test is more general than parametric tests such as 

the t-test. 

 

3. RESULTS 

3.1. fMRI Experiment 

To demonstrate the proposed method, we utilized fMRI data that 

would be expected, based on prior knowledge, to activate 

subcortical structures. The paradigm consisted of externally 

guided (EG) or internally guided (IG) movements based on three 

different finger sequencing movements (FSMs) performed 

alternatively by either the right or left hand. For FSM #1, 

subjects had to (a) make finger-to-thumb opposition movements 

in the specific order of the index, middle, ring and little finger; 

(b) open and clench the fist twice; (c) complete finger-to-thumb 

oppositions in the opposite order (i.e., little, ring, middle and 

index finger); (d) open and clench the fist twice again; and then 

(e) repeat the same series of movements. The FSM #2 was the 

same as above except the sequence for (a) changed to index, 

ring, middle and little fingers and (c) changed to the reversed 

order of the revised (a) (i.e., little finger, middle, ring, and index 

finger). The FSM #3 was the same as above except the sequence 

for (a) changed to middle, little, index, and ring fingers and (c) 

changed to the reverse of above the revised (a) (i.e., ring, index, 

little, middle fingers). The above three sequences (instead only 

one sequence) were chosen to insure the continuous 

engagements of the subjects’ attention. 

The above FSM were performed in two test conditions (see 

Figure 1): following (Externally guided movements-EG) and 

continuation (Internally guided movements-IG). The two 

consecutive conditions were preceded and followed by a rest (R) 

period (30 s). The EG, IG, and R periods were designated using 

the visual cues, “FOLLOW,” “CONTINUE,” and “REST”, 

respectively. The FOLLOW-CONTINUE-REST cycle was 

repeated four times during each run (total duration of 6 

minutes). There were total of 4-6 runs performed on each 

subject. (Details are in this paper’s submitted journal version.)  

 

3.1. Performance and Discussions 

To illustrate the performance of the proposed LLDA-based 

approach, we also performed Standard SPM analysis on our 

data. The first level comparisons were made between right hand 

and left hand finger sequential movements, and the individual 

activation map ( right > left; and left > right) for each subject 

was first generated by a fixed-effect model with the voxels that 

exceeded a probability threshold of p = 0.05 ( FDR (False 

Discovery Rate) corrected). The second level analysis was made 

based on the results of the individual activation maps generated 

in the first level comparison. That is, the contrast images, one 

from each of 10 subjects from the first level comparison (for 

example, right>left) were assessed using one sample t test by a 

random-effect model. The regions that have clusters with at least 

5 contiguous voxels exceeded a probability threshold of p = 

0.001 (uncorrected) were identified as activated regions. 

Using standard SPM, we found activation in the left primary 

motor cortex during right hand movement, and similarly left 

primary motor cortex activation during right hand movement. 

Activation in the left cerebellar hemisphere was detected using 

left hand movement only (Figure 1a). 

In contrast, with LLDA significant activation was detected 

with in the left primary cortex, left anterior cingulate cortex, the 

left putamen/globus pallidus, the left thalamus, and right 

cerebellar hemisphere during right hand movement. With left 

hand movement LLDA detected significant activity in the right 

primary motor cortex, the right supplementary area, the left 

caudate, the right putamen/globus pallidus, the right thalamus 

and the left cerebellar hemisphere, as in Figure 1(b). In all cases 

the separation across each subject using U was statistically 

significantly.  

Compared with SPM, in addition to finding activations 

similar to the SPM approach, the proposed approach also found 

a number of subcortical regions that were significantly active, 

including the contralateral thalamus, putamen/GP. We also 

found differences between the use of the right and left hand, 

such that the right SMA was activated only during left hand 

performance. This result most likely reflects differences due to 

hand dominance. 

 

4. CONCLUSION 

In this paper, we developed a modification of the local linear 

discriminant (LLDA) algorithm to perform ROI-based group-
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wise analysis on activation maps using fMRI data. Based on 

analysis with real fMRI data, the proposed approach provides 

more expected activation than that of standard SPM. This 

suggests that the vector space of ROI-based activation statistics 

is relatively robust to individual subjects, but differs by task 

activation. 

There is growing recognition that warping of individual 

subjects’ brains to a common space may cause particular 

registration problems, especially with small subcortical 

structures [20, 21]. Despite widespread evidence that subcortical 

structures such as the thalamus are an integral part of the 

network used for motor control, only the proposed LLDA-based 

approach, when applied to unwarped data, was able to detect 

significant activation differences between right and left handed 

task performance. 
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Figure 1: Performance of the 

proposed LLDA-based approach in 

fining significant ROI activations. To 

make a comparison, we also 

performed Standard SPM analysis on 

our data, as the results shown in (a), 

where clusters with at least 5 

contiguous voxels exceeded a 

probability threshold of p = 0.001 

(uncorrected) were identified as 

activated regions. In (b), relative 

contribution of the 16 ROIs 
between right hand and left hand 

finger sequential movements. 
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