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ABSTRACT  

Automatic segmentation of prostate boundaries from 
Transrectal Ultrasound (TRUS) images still poses 
significant challenge in minimally-invasive surgical 
procedures. The presence of strong speckle noise and 
shadow artifacts limits the effectiveness of classical 
segmentation schemes. Several model-based and feature-
approaches have been proposed for segmentation of the 
prostate. In this paper, we propose a new energy-based 
method for segmentation of ultrasound prostate images 
using active contour modeling guided by dot-pattern 
textural energy map. First, impulsive noise and speckles 
are reduced with median filtering and top-hat transform. 
Prostate features are then extracted from the filtered 
images using non-linear dot-pattern select operator. An 
elastic template shape model that incorporates a priori 
knowledge of the average geometric shape of the prostate 
boundaries as well as the energy derived from the dot-
pattern feature image are utilized to search for the optimal 
prostate contour. A number of experiments comparing the 
extracted contours with manually-delineated contours 
validated the performance of our method.  

Index Terms— Prostate, Segmentation, Transrectal 
Ultrasound, Dot-Pattern Select Cells, Active Contour  

1. INTRODUCTION  

Prostate cancer remains the most commonly diagnosed 
cancer in men and the second highest North American 
mortality rate among all cancers in men, surpassed only by 
lung cancer [1]. Modern diagnosis and treatment methods, 
such as needle-biopsy and brachytherapy respectively, 
takes into account the 2D geometric distribution of the 
prostate as imaged by ultrasound to map out an effective 
and accurate treatment plan. The relatively inexpensive 
and safe use of ultrasound makes it an attractive imaging 
modality compared to other imaging tools such as MRI 

and CT. To image the prostate, a cylinder shape probe, 
also called transrectal probe, is inserted into the rectum and 
rotated to scan the entire prostate capsule. The produced 
scans are ultimately used to reconstruct a 3-D model of the 
prostate [1,2]. In addition, the safety associated with 
ultrasound allows for real time monitoring of the prostate 
gland and accounts for any anatomical displacement. 
However, the main drawback of ultrasound stems from the 
presence of speckles and artifacts arising from 
constructive-destructive interference of the reflected 
waves. Ultrasound prostate images are highly corrupted 
with noise which prevents accurate localization of the 
gland. As a result, most modern treatment planning tools 
rely on manual outlining of the prostate; a tedious process 
that requires extensive labor time and comes at the expense 
of spatial resolution particularly when large number of 2D 
images are available. While many research studies have 
had some success in segmenting the prostate boundaries 
from ultrasound images with minimal human intervention, 
only limited progress has been reported. Researchers 
designed a 3D discrete active deformable model to outline 
the prostate using initial polygonal contours defined in a 
number of slices and using edge maps to drive the 
deformation model [3,4]. Others have developed an 
algorithm for detecting prostate edges as a visual guidance 
for the user to manually follow [5]. Statistical shape 
models have also been applied to segment and differentiate 
between the various shapes of prostates using prior 
knowledge of the prostate region in ultrasound images. 
Neural Network has also been utilized to recognize the 
prostate geometry from a database of prostate shapes. 
Gabor filtering was designed to extract prostate features 
and train a KSVM neural network [6]. Adaptive edge-
detection methods were also employed [7]. Despite that 
some of these studies have reported accurate segmentation 
results, most still require substantial degree of user-
interaction. In this paper, we propose a new template-
driven approach that incorporates a priori knowledge about 
the average statistical shapes of the prostate to account for 
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shape variability among human prostates. Unlike most 
deformable models that uses, as its external energy, 
gradient information that may contain many false edges, 
we use dot-pattern features found within the prostate to 
find the best matching contour. Our hypothesis is that 
distinct prostate features manifested in some regions of the 
ultrasound image as regular dot-like patterns can be 
detected using selective cells with nonlinear behavior 
derived from differential of Gaussian operator [8,9]. These 
cells react maximally to a pattern that consists of a cluster 
of dots regardless of their exact shapes (square or dots). In 
this paper we show how such intrinsic textural features 
consistently found within the prostate region of ultrasound 
images can form the basis for efficient detection of the 
prostate boundaries through energy minimization of a 
template-based, elastically-driven deformable model. A 
number of experiments comparing the extracted contours 
with manually-delineated contours are carried out to assess 
the efficiency of our proposed method.  

2. PROSTATE SEGMENTATION  

Our template driven approach is divided into three major 
tasks. The first task is to reduce noise and speckles that 
typically exist in ultrasound images and usually interfere in 
the segmentation process. This is accomplished via a set of 
pre-processing filters. The second task is to detect regular 
dot-like patterns that normally appear within the prostate. 
The energy map of this dot-pattern feature is used to drive 
a deformable active contour toward a global minimum. 
The initial contours in this model are chosen from 
statistical shapes that were obtained from a set of 
manually-outlined contours. An elastically constrained 
deformation ensures that the original contour shape is 
preserved. An iterative search is applied to find the contour 
that best achieves a global minimum.  

2.1. Noise Removal Filtering  

2.1.1. Median Filtering  
Median filter is first applied to reduce impulsive noise. 
This non-linear filtering modifies the gray-levels of the 
image while preserving the original information. The 
center pixel of a 5x5 window is substituted with the 
median value of all the pixels in the window.  

2.1.2. Top-Hat Transform  
Top-hat transform filter is applied by morphological 
opening the image by a flat-top hexagon structure element 
with a radius of 9. Morphological operation is a well-
known procedure in image processing. The opening of an 
image A is obtained by first eroding the image with a 
structure element B, after which one performs dilation on 

this eroded image with the same structure element. 
Mathematically, opening of A by B is defined as: 

BBABA )(     (1)
 
This process removes peaks of image surfaces smaller than 
hexagon leaving slowly varying background. This gray-
level variation is further removed by subtracting the 
opened image from the original image. The resulting image 
difference image contains little or no information in the 
regions of low-signal amplitude (Fig. 1).  

2.2. Dot Pattern Select Cells  

The dot-pattern selective method is a biologically 
motivated approach that is known to be effective in 
extracting particular class of features. This nonlinear 
operator is modeled with cells that are selective to dot-like 
patterns with regular geometric distribution. These clusters 
of patterns, which are the result of tissue granularity, are 
always found spread across most of the prostate region in 
an ultrasound image. The selective cells are not affected by 
the size, shape or orientation of these dots as long as they 
are equidistant from each others.    

Individual dot elements within dot-patterns, which are 
mainly spots of varying light intensity, are first detected by 
the selective cells. These cells react strongly to intensity 
spots (intensity increments or decrements) of appropriate 
size. The spatial summation property of such a cell is 
modeled by a difference of Gaussians function (DOG) [9]: 
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where the image point coordinates x and y specify the 
position of a light impulse (spot) in the image field. The 
coefficients Ac and As are selected in such a way that all 
positive values of the DOG add up to 1 and all negative 
values add up to -1. The parameters  and  describe the 
standard deviation and the center of the surround Gaussian 
functions. Figure 2 shows a 1D and 2D map of the DOG 
function. After a group of cells are activated by a cluster of 
individual dots or spots, their cumulative response are 
combined into one response of a subunit. The response of 
a population of such cells that cover uniformly the visual 
field as represented by the frame of the input image, and 
have the same form but are centered at different positions, 
are computed by convolving the input image g with the 
DOG function such that:  

DOGgyxu ),(     (3) 
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Contrast normalization is also performed by dividing the 
combined response by the average gray level of the image 
within the visual field.  
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Where C is a positive coefficient and is the local 

grey level average computed by convolving the input 
image with the Gaussian function with the largest standard 
deviation among those used. This step reduces the 
dependence of the strength of the response on the local 
contrast of the features. At this point, contiguous dot-
pattern activity regions in the center cell are reduced to a 
single pixel. Finally, Lateral inhibition and a winner-takes-
all technique are applied to suppress all responses to sub-
optimal spots [9].  
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The spot-detector described above has been shown to be 
sensitive to spots of specific size in the visual field, 
independent of the contrast and discarding other image 
features such as lines and edges. The intensity of a pixel in 
a result image represents the response of the corresponding 
cell centered at that pixel. The effectiveness of the spot-
detector in detecting dot-pattern features in prostate 
ultrasound images is illustrated in figure 3. Although 
isolated features can be seen scattered across the image, 
the majority of these spots are concentrated around the 
middle of the prostate. When the original unfiltered 
prostate image was presented to the spot-detector operator, 
the detected features were no longer confined to the 
prostate (Fig. 3, right). In this case, speckles were 
erroneously detected as well. This demonstrates the 
importance of noise-reduction to the overall process.  

2.3 Deformable Template  

Our energy-based approach to segmentation is achieved 
with an elastic deformable template [10]. This template is a 
2D surface, whose initial shape reflects a priori knowledge 
about the prostate. Considering the elliptical shape of the 
prostate, the initial contour is generated experimentally 
from a set of elliptical curves matched to a set of manually-
extracted contours. During the process of detection, the 
model evolves in such a way that the following energy 
function is minimized: 
      (5) 
                  

 (6) 
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where I(x,y) is the dot-pattern image obtained from 
equation 4. The internal energy Eint will pull the contour 
towards a smooth curve, while the external energy Eext will 
pull towards maximum dot-pattern energy. The gradient 
term Eext has been added to prevent the contour from 
being pulled toward false minima. The parameters  and  
in the internal energy term describe the magnitude of 
elasticity and rigidity of the deformed contour, 
respectively. Contours with large  will not stretch or 
shrink easily while contours with large  will not bend 
easily. In order to elastically constrain the model to 
preserve the geometric shape of the model, we choose  
and  be 0.01 and 2 respectively. The external energy term 
Eext drives the shape model to the prostate boundaries such 
that the dot-pattern energy contained is maximized.  The 
parameter  is the weight of the external energy to the 
overall deformation process and was chosen 
experimentally to be 0.6. Five Initial shape templates 
{T1…TM} were built from subsets of manually outlined 
contours {S1 ….SN} such that: 
 
          Where n = 1...N/M    (8) 
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which represents the mean curve of every subset in {Si}. 
The details of the alignment of curves (rotation, translation 
and scaling) for the purpose of averaging can be found in 
[13]. The templates {Ti} were selected as initial contour 
candidates. All five contour templates were then allowed 
to evolve through iterative elastic deformation until the 
energy value in equation 5 reached a global minimum. The 
contour T that provided the minimal energy was finally 
designated as the ground-truth contour. The segmentation 
process requires a rough positioning of the model on the 
ultrasound image. Again, we use prior anatomical 
information of the prostate contour to obtain an 
approximate position and orientation of the prostate 
contour with respect to the ultrasound probe. Figure 4 
shows an optimal contour obtained by the energy 
minimization algorithm superimposed on both the energy 
map image as well as the original prostate image.  
 

       
Figure 1: Original TRUS image of the prostate (left). The image after 
applying median filtering and morphological top-hat transform (right). 
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Figure 2: One-dimensional DOG profile (left). Intensity map of a two-
dimensional DOG function (right). 
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Figure 3: Result of applying dot-pattern detector to the original image in 

(left) and to the top-hat transformed image (right). 
 

 
Figure 4: Deformed contour at maximum dot-pattern energy (left). 

Contour superimposed on original image (right). 
 

Individual Distance(Pixels) Overlap Area 
Error % 

1 
2 
3 

17 
11 
18 

3.2 
7.2 
4.6 

Table 1: Comparison of the energy-based contours and manually 
segmented contours. 

3. EXPIREMENTAL RESULTS  

In this section, we evaluate our algorithm by comparing 
the energy-based segmentations and manual segmentations 
of ten ultrasound images. The original images are 8-bits 
pixels of size 489x382. Ten manually-segmented 
ultrasound images of 3 different individuals were obtained 
and compared with results from the proposed method. An 
error analysis on the overlapping area between the 
segmented areas using the manual and automatic 
segmentation method is shown in Table 1. In order to 
calculate the maximal shortest distance error, we find the 
distance to the closest point on the contour drawn by the 
expert and we take the maximum of the distances over the 
contour produced by the algorithm. The overlap area error 
is the overlap between the manual segmentation and 
automatic segmentation contours. Our algorithm has 
demonstrated an accuracy of at least 92%. Few factors may 
have influenced the accuracy of our method including the 
limited number of the template candidates.   

4. CONCLUSION  

An energy-based, template-driven segmentation scheme 
has been presented in this paper, for extracting prostate 
boundaries from TRUS images. This new proposed 
method relies on detection of a special class of textural 
elements within the prostate. The method reveals unique 
properties of prostate ultrasound features that may form 
basis for future segmentation techniques. Although the 
results clearly demonstrate the accuracy of our energy-

minimizing approach, further validation of these dot-
pattern models is needed with more prostate images of 
various geometric and textural features. Also, a parametric 
shape contour may also be more efficient in creating a 
larger set of templates with higher level of accuracy.    
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