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ABSTRACT

This paper investigates the use of data-adaptive spectral es-
timation techniques for blood velocity estimation in medical
ultrasound. Current commercial systems are based on the av-
eraged periodogram, which requires a large observation win-
dow to give suf cient spectral resolution. Herein, we propose
a novel data-adaptive method to form the blood velocity spec-
tral estimate. The method is evaluated using realistic Field II
simulations for both steady and unsteady ow. The latter rep-
resenting the femoral artery with strong tissue interference.
The method is compared to the averaged periodogram and
a Capon-based estimator. The simulations indicate that the
proposed method offer a signi cant performance gain, sug-
gesting that the frame-rate may be increased dramatically by
using adaptive spectral estimation techniques.

Index Terms— Blood velocity estimation, medical ultra-
sound, adaptive spectral estimation.

1. INTRODUCTION

A typical B-mode ultrasound image consists of about 100 im-
age lines, with each line being created by focusing the ultra-
sound transducer array on a single point on the current line.
The backscattered waves are processed with dynamic receive
focusing, and, ideally, only objects along the image line are
interrogated. The velocity of moving blood can be estimated
by imaging the same image line repeatedly. The slow-time
signal (sampled with the pulse repetition frequency), for a
speci c depth, exhibits a modulation in its center frequency
which is proportional to the axial velocity [1]. A common
way of estimating the blood velocity is to estimate the power
spectral density (psd) of the slow-time signal. Displaying the
psd as a function of time (the so-called sonogram or spectro-
gram) not only visualizes the blood velocity but also allows
the operator to track the time-variations of the blood.

In ultrasound imaging, the psd is normally estimated us-
ing an averaged periodogram approach, also known as Welch’s
method [2]. However, as is well-known, the method suffers
from either low resolution or high leakage, or both, and to
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achieve suf cient spectral resolution, the duration of the ob-
servation window has to be long. This implies that a large
number of transmissions (about 100) has to be carried out to
obtain a suf ciently accurate psd estimate. This lowers the
frame-rate of the system signi cantly and makes the temporal
resolution poor. This limits the usability of the system as it
is desirable to update the B-mode image frequently to allow
the physician to examine the surrounding tissue. As a result,
there is a need for algorithms that yield suf cient spectral res-
olution from fewer image lines, thus allowing the frame-rate
and the temporal resolution of the system to be increased.

In this paper, we formulate a data-adaptive blood veloc-
ity spectral estimator based on the matched lterbank (MAFI)
framework [2,3]. The performance of the method is evaluated
using realistic Field II [5] blood ow data, for both steady and
unsteady ow. The method is compared to a Capon-based es-
timator and Welch’s method. The latter is used extensively in
commercial ultrasound systems. The simulations indicate that
the proposed method offer a pronounced performance gain as
compared to Welch’s method, suggesting that the frame-rate
may be increased signi cantly.

2. THEORY AND METHODS

To estimate the blood velocity at a given location, a number
of transmissions are carried out in the same direction. After
focusing, the resulting image lines represent a time series over
depth. Let yk(l) denote the available (stationary) data sample
at slow-time (transmission-number) l and fast-time (propor-
tional to depth) k, of which the blood velocity spectrum is
to be estimated. For a generic (axial) velocity vz , yk(l) can
be expressed as [1] (assuming that In-phase and Quadrature
channels have been created)

yk(l) = αvze
j
n
k ωc
fs

−l 2ωcvzcfprf

o
+ wk(l), (1)

for k = 0, . . . ,K−1 and l = 0, . . . , L̃−1, where αvz denotes
the (complex-valued) amplitude of the sinusoidal signal at ve-
locity vz , assumed to be constant over the slow-time observa-
tion window, and wk(l) is the residual (or noise) term con-
taining the signal components at all velocities different from
vz . Furthermore, ωc = 2πfc, with fc denoting the center fre-
quency of the transducer, fs the sampling frequency of the
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system, fprf the pulse repetition frequency, and c the speed
of sound. We note that the second term in the exponential in
(1) is due to the time shift occurring when the blood particles
move between transmissions. The problem of estimating the
blood velocity spectral density can thus be expressed as form-
ing an estimate of |αvz |2, for each velocity of interest. For a
given depth (fast-time sample) k, let

yk(�) �
[
yk(�) . . . yk(� + N − 1)

]T
, (2)

for � = 0, . . . , L − 1, with L = L̃ − N + 1 representing
the total number of slow-time vectors in the time-series. By
introducing φ = ωc/fs and ψ = −2ωcvz/cfprf , (2) can be
written as

yk(�) = αvzaψe
jkφ+j�ψ +wk(�), (3)

where wk(�) is formed similar to yk(�), and

aψ �
[

1 ejψ . . . ejψ(N−1)
]T

. (4)

Using the MAFI framework, we proceed to form a bank of
matched lters, hψ, for each ψ of interest, such that

hψ = argmin
hψ

h∗ψQψhψ subject to h∗ψaψ = 1, (5)

where Qψ = E{wk(�)w∗
k(�)} denotes the covariance matrix

of the noise term, where, by notation, we stress that Qψ will
depend on ψ. Here, E{·} and (·)∗ denote the expectation and
the conjugate transpose, respectively. Thus, the lter centered
at a given velocity represented by ψ, hψ , will minimize the
noise power at the lter output, while being constraint to pass
the sinusoidal component at ψ undistorted. As is well known,
the solution to (5) is given as [2]

hψ =
Q−1

ψ aψ
a∗ψQ

−1
ψ aψ

. (6)

We proceed to note that

h∗ψyk(�) = αvze
jkφ+j�ψ + h∗ψwk(�), (7)

suggesting that αvz can be estimated by averaging theL slow-
time vectors at depth k

α̂(k)
vz = h∗ψY

(k)
ψ , (8)

where

Y(k)
ψ � 1

L

L−1∑
l=0

yk(l)e−jkφ−jlψ. (9)

Typically, one can assume that the velocity of the blood is
slowly varying over depth [1]. An improved estimate can be
formed by averaging over depth (fast-time)

Φ̂ψ =
1
K

K−1∑
k=0

∣∣∣α̂(k)
vz

∣∣∣2 . (10)

To evaluate (10), it remains to form an estimate of Qψ . From
(3), we note that

R � E{yk(�)y∗k(�)} = |αvz |2 aψa∗ψ +Qψ, (11)

suggesting the estimate

Q̂ψ = R̂− |α̂vz |2 aψa∗ψ (12)

= R̂− 1
K

K−1∑
k=0

Y(k)
ψ Y(k)∗

ψ (13)

where the second equality follows from (8), and where

R̂ =
1

LK

K−1∑
k=0

L−1∑
l=0

yk(l)y∗k(l) (14)

Given the close resemblance to the APES1 power spectral es-
timator, proposed in [4], we term the estimator in (10), using
(13), the Blood spectral APES (BAPES) estimator.

For performance analysis, we compare the proposed method
with both a Capon- and a Welch-based blood spectral estima-
tor. To form the Capon-based blood spectral estimate, write
(see, e.g., [2] for further details on this estimator)

Φ̃ψ =
1

a∗ψR̂−1aψ
. (15)

We term this estimator the Blood spectral Power Capon (BPC)
estimator. Finally, we note that the Welch estimate can be
formed as

Φ̆ψ = a∗ψR̂aψ. (16)

3. RESULTS

In this section, we will evaluate the performance of the dis-
cussed estimators using both simplistic arti cial data and re-
alistic Field II blood ow data with both steady and unsteady
ow. Initially, we evaluate performance on simplistic data

with a single velocity component at vz = 0.5 m/s, observed
in white zero mean circularly symmetric Gaussian distributed
noise with a signal-to-noise-ratio of 57 dB. Further, fprf =
10 kHz, fc = 7 MHz, c = 1540 m/s and fs = 100 MHz. The
slow-time and fast-time observation windows were chosen to
be K = 40 and L = 9, respectively. Fig. 1 shows the result-
ing blood spectral estimates using a lter of length N = 8.
As is clear from the gure, the adaptive estimators (BAPES
and BPC) clearly outperform the Welch-based estimator, with
the BAPES estimator showing the best performance.

We proceed to examine a realistic steady ow, simulated
using the simulation tool Field II [5]. A cylindric vessel with a
parabolic ow pro le was created, where the number of blood
scatterers was chosen so that one resolution cell2 contained at

1The acronym APES stands for Amplitude and Phase EStimation.
2One resolution cell was λ × λ × λ, where λ is the wavelength of the

ultrasound.
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Fig. 1. The blood spectral estimates for the simplistic model
with velocity vz = 0.5 m/s. The BAPES estimate displays
better sidelobe levels as compared to both BPC and especially
Welch’s method.

least ten particles to assure fully developed speckle. The ves-
sel had a radius of 5 mm and was positioned at a depth of 25
mm. The maximum velocity in the vessel was 0.1 m/s, with
a beam to ow angle of 45◦, implying that the measured ax-
ial velocity will be about 0.071 m/s. A 12 MHz linear array
transducer with 128 elements was simulated. The excitation
waveform was an eight cycle sinusoid at the center frequency
of the transducer. Data was acquired with fprf= 10 kHz. The
transmitting aperture was the central 30 elements, focused at
a depth of 25.7 mm. The backscattered signals were recorded
by all 128 elements and beamformed with dynamic focusing
using a Hanning window as aperture weighting. The velocity
of the moving blood particles was estimated in the middle of
the vessel using the discussed blood spectral estimation tech-
niques, using N = 8, K = 40 and L = 9. Fig. 2 shows
the resulting blood spectral estimates. The gure indicates a
similar performance as was observed for the simplistic data
model. It should be noted that since the ultrasound system
has a nite spatial resolution, a distribution of blood particles
moving with different velocities will be measured in every
transmission. Therefore, the velocity spectral estimates will
consist of a distribution of velocities. The results in Fig. 2
indicate that by applying adaptive spectral estimation tech-
niques, much can be gained in terms of velocity resolution.

We proceed to examine the velocity resolution as a func-
tion of N . Using the cylinder ow data, with K = 40 and
L = N+1, we evaluate the full width half maximum (FWHM)
of the blood spectral estimates for varying lter lengths. Fig.
3 clearly indicates the superior performance of the adaptive
estimators as compared to Welch’s method, with the BAPES
estimator yielding better resolution than BPC for large values
of N .

Finally, we examine the performance for realistic blood
ow data with unsteady ow being affected by strong tissue

interference. A 5 MHz 128 element linear array transducer
was simulated. The excitation waveform was a four cycle si-
nusoid at the center frequency of the transducer and the fprf
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Fig. 2. The blood spectral estimates for a cylinder ow vessel
with axial velocity vz = 0.071 m/s. The ultrasound trans-
ducer has a certain spatial resolution and therefore, a distribu-
tion of velocities will be measured.
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Fig. 3. The velocity resolution (FWHM) for the discussed
methods for varying lter lengths, N . The BPC and BAPES
display signi cant improvements in spectral resolution for
small N as compared to Welch. As N increases, BAPES
gives slightly better resolution as compared to both BPC and
Welch.

was 15 kHz. The target was a vessel situated at a depth of 38
mm with a radius of 4.2 mm. The ow pro le was parabolic
over the vessel and varying with time. The ow was chosen
to resemble the ow pro le of the femoral artery in the leg.
The Womersley model [6] for pulsating ow in a vessel was
used to generate realistic ow data. A tissue signal was su-
perimposed on the ow model being 40 dB stronger than the
blood signal.

Prior to velocity estimation, the tissue signal was removed
by a mean subtraction lter [1] of length N . The velocity
of the moving blood particles was thereafter estimated in the
middle of the vessel. Here, N = 96, K = 40 and L = 97.
The resulting spectrogram as a function of time is shown in
Fig. 4 where the dynamic range is 40 dB. The three meth-
ods all display suf cient spectral resolution to represent the
velocity distribution as a function of time. The analysis was
repeated for N = 8, K = 40 and L = 9. As seen in Fig. 5 the
adaptive methods still manage to represent the blood velocity
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Fig. 4. The blood spectral estimates for an unsteady ow, us-
ing N = 96. The dynamic range is 40 dB. All three methods
display similar performance and it is easy to track the changes
in the blood ow. However the Welch estimate shows more
spectral leakage as compared to BPC and BAPES.

distribution satisfactory, while the Welch-based estimate has
much too poor resolution to give any information about the
properties of the moving blood.

4. CONCLUSION

In this paper, we have proposed a novel data-adaptive blood
velocity spectral estimator based on the matched lterbank
framework. The proposed method was compared to the aver-
aged periodogram (Welch’s method) and to a Capon-based
approach. Via extensive simulations using both simplistic
and realistic steady and unsteady blood ow data, we have
concluded that the adaptive (both BPC and BAPES) estima-
tors offer a signi cant performance gain as compared to the
Welch-based blood velocity estimator used in commercial ul-
trasound scanners. We conclude that adaptive spectral estima-
tion techniques can potentially be used to improve the tem-
poral resolution and frame rate of blood velocity estimation
systems in medical ultrasound.

Time [s]

A
xi

a
l v

e
lo

ci
ty

 [
m

/s
]

WELCH, N = 8

0 0.1 0.2 0.3 0.4 0.5 0.6

1

0.5

0

0.5

1

Time [s]

A
xi

a
l v

e
lo

ci
ty

 [
m

/s
]

BPC, N = 8

0 0.1 0.2 0.3 0.4 0.5 0.6

1

0.5

0

0.5

1

Time [s]

A
xi

a
l v

e
lo

ci
ty

 [
m

/s
]

BAPES, N = 8

0 0.1 0.2 0.3 0.4 0.5 0.6

1

0.5

0

0.5

1

Fig. 5. The blood spectral estimates for an unsteady ow,
using N = 8. The dynamic range is 40 dB. It is no longer
possible to rely on the Welch estimate due to signi cant spec-
tral leakage. However, the BPC and BAPES still manage to
represent the unsteady blood velocity.
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