
LOW COMPLEXITY FACTORIAL PULSE CODING OF MDCT COEFFICIENTS USING
APPROXIMATION OF COMBINATORIAL FUNCTIONS

Udar Mittal, James P. Ashley, and Edgardo M. Cruz-Zeno
mittal, ashley, cruz@labs.mot.com

Speech Processing Research Labs, Motorola Labs,
Schaumburg, IL, 60196, USA

ABSTRACT

Factorial pulse coding, a method which is known to
efficiently code an information signal using unit magnitude
pulses, involves computation of combinatorial functions.
These computations are highly complex as they require
many multiply and divide operations on multi-precision
numbers, especially when the length of a signal is large or
many unit magnitude pulses are used for coding. In this
paper, we propose a very low complexity method for
approximation of these combinatorial functions. The
approximate functions satisfy a property which preserves
unique decode-ability of the factorial packing
encoding/decoding algorithm. The low complexity
computation enables use of factorial packing in
encoding/decoding of 144 MDCT coefficients using 28 unit
magnitude pulses for the audio coding mode of the EVRC-
WB speech coding standard without affecting the number of
bits required for coding.

Index Terms—factorial packing, factorial pulse coding,
enumeration, MDCT, audio coding

1. INTRODUCTION

Factorial pulse coding (FPC) [1] is an enumerative method
for coding a vector x = {x0, x1, ..,xn-1} satisfying

−

=
=

1

0

n

i
ixm , (1)

and all values of vector xi are integral valued such that
mxm i ≤≤− , where m is the total number of unit amplitude

pulses, and n is the vector length. The)(log2 NM = bits
are used to code N combinations in a maximally efficient
manner [1,2], such that the following expression, which
describes the theoretical minimum number of combinations,
holds true:

 M
nm

d

ddmDdnFN 22),(),(
),min(

1
≤=

=
 (2)

For this equation, F(n, d) is given by:

)!(!
!),(

dnd
ndnF
−

= , (3)

D(m,d) are the number of combinations of d non-zero vector
elements given m total unit pulses given by:

)1,1(),(−−= dmFdmD , (4)
and 2d represents the combinations required to describe the
polarity (sign) of the d non-zero vector elements. In the FPC
method, the information content is divided into four
constituents: 1) number of non-zero pulse positions (ν); 2)
position of the non-zero pulses (π); 3) magnitude of the non-
zero pulses (μ); and 4) signs of the non-zero pulses (σ). The
encoding of pulse positions in FPC is given by

 npkpFC k
k

k <≤=
=

0),(
1

ν
 (5)

where π = {p1, p2,…, pn}.
 The magnitude of non-zero pulses is coded using (5)
iteratively. Details of the encoding can be found in [1,3].
Decoding from the code C requires finding the smallest
value of s such that),(ksF is greater than a given constant.
This procedure is repeated times. Efficient encoding and
decoding requires low complexity computation of F(s,k).
F(s,k) is generally computed left to right using the following
expression:

⋅+−⋅
−

⋅+−⋅⋅⋅−⋅⋅−⋅=
k

ks
k

kssssksF
1)1(

1
1)2(

3
1)2(

2
1)1(),((6)

 This requires k-1 multiplications and k-1 divisions.
Smaller values of n and m, such as n = 54 and m 7 which
is used in coding of fixed codebook excitation in the EVRC-
WB codec, do not cause any unreasonable complexity
burden. However, larger values can quickly cause problems
as these operations are then performed over a multi-
precision number. For example, use of this coding method
for audio coding with n = 144 and m = 28 requires 28
multiply and divide operations over a 99-bit number. This
complexity burden can be reduced by storing these functions
in memory using methods proposed in [3]. However, the
memory requirement for large values of n and m may be
prohibitive, especially for use in handheld devices, such as a
cellular phone.

I 2891424407281/07/$20.00 ©2007 IEEE ICASSP 2007

 In this paper, we propose using approximations of the
combinatorial functions instead of exact combinatorial
functions in FPC. These approximate functions can be
computed at very low complexity using operations on finite
precision numbers (< 32 bits) and with very low memory
requirements. We will show that if these functions satisfy a
certain property, then the resulting codeword is uniquely
decodable using the encoding/decoding algorithm of FPC.

2. FACTORIAL PULSE CODING USING
APPROXIMATE COMBINATORIAL FUNCTIONS

As mentioned in Section 1, FPC uses (5) for encoding the
pulse positions and magnitudes. The decoding process
requires finding the smallest value of s such that),(ksF is
greater than a given constant. We want to construct an
approximate function),(ksF ′ such that using these
functions, the encoding method of (5), and the same FPC
decoding algorithm can be used. First, we state and prove a
property which is a sufficient condition for this replacement,
and then present an algorithm to compute such functions.
Uniqueness Theorem: If),(ksF ′ satisfy

kmksnksFksFksF ≥≥≥≥−−′+−′≥′ ,0),1,1(),1(),(

,1)0,0(
 ,0or ,0),(

=′
<<=′

F
kksksF

 (7)

then),(ksF ′ can be substituted in the encoding/decoding
algorithms of FPC to form a codeword which is uniquely
decodable.
Proof: We assume that),(ksF ′ satisfies the property given
in (7). Since the decoding process of FPC finds the location
of the kth pulse by finding the smallest value of s k such
that),(ksF ′ is greater than a given constant. Thus, if the
maximum codeword for k pulses occupying position 0 to s-1
is less than),(ksF ′ then s-1 can be decoded as the occupied
position. The maximum such codeword, using (5) and the
fact that for a given j,),(jrF ′ is a non-decreasing function
of r (from (7)), is given by:

)1,(),(max 1
+−−′=

=
jkjsFksC

k

j
 (8)

Thus for correct decoding,

)1,(),(
1

+−−′>′
=

jkjsFksF
k

j
 (9)

Since),(ksF ′ is a non-negative integer, the above
expression is equivalent to:

 1)1,(),(
1

++−−′≥′
=

jkjsFksF
k

j
 (10)

Consider first the case where ks = . In (10), replacing
)1,(+−−′ jkjkF = 0, we get:

 1),(≥′ kkF (11)

 Repeatedly applying the inequality in (7) for ks = , we get:
1)0,0()...2,2()1,1(),(=′≥−−′≥−−′≥′ FkkFkkFkkF (12)

From (12) we can see that (7) implies (9) for ks = . Now
let us look at s > k, again repeatedly applying inequality in
(7), we get

)0,(
1

)1,(

),(
1

)1,(

)2,2()1,2(),1(
)1,1(),1(),(

ksF
k

j
jkjsF

rkrsF
r

j
jkjsF

ksFksFksF
ksFksFksF

−′
=

++−−′≥

−−′
=

++−−′≥

−−′+−−′+−′≥
−−′+−′≥′

(13)

Similarly as in (12), for ks > , we can show that
1)0,(≥−′ ksF . This combined with (13) shows that (10) is

also true if (7) is satisfied.

In order to describe the generation of),(ksF ′ , let us
proceed by first deriving a function),(ksF ′ that is a suitable
approximation of F(s, k). The first step is to take the
logarithm of an arbitrary base a of (3), and taking the
inverse log base a of the rearranged terms:

−=
=+−=

k

j
a

s

ksi
aa jiksF

11
)(log)(logexp),(, (14)

where the function expa(t) = at. Next, define functions P(i),
Q(k), and R(t), and substitute into (14) such that:

−=
+−=

)()(),(
1

kQiPRksF
s

ksi

, (15)

where)(log)(iiP a= ,
=

= k

j a jkQ
1

)(log)(, and

t
a attR ==)(exp)(. Clearly, F(s,k) can be precisely

computed using (14) and (15) provided the logarithm in (14)
has multi-precision output and the exponential function in
(15) has both multi-precision input and output. Thus, such
an approach may not be conducive for exact computation of
combinatorial function.
 We will now investigate using a similar approach for
computing approximations of combinatorial functions
without using multi-precision logarithm and exponential
functions. Besides having low complexity computation,
these functions should also satisfy Uniqueness Theorem (7).
 Referring back to (15), we now wish to generate F'(s, k)
by creating the functions P'(i), Q'(k), and R'(t), with low
complexity approximations of the original functions, P(i),
Q(k), and R(t), respectively, such that:

′−′′=′
+−=

)()(),(
1

kQiPRksF
s

ksi

. (16)

I 290

 Considering P(i), we may wish to approximate the
function such that []niiiP a ,,2,1),(log)(∈≥′ . If we
choose a = 2 and then restrict P'(i) to 32 bits of precision,
the resulting operations are easy to implement on a handheld
mobile device since most DSPs support efficient 32 bit
additions. Therefore, we define:

() []niiiP ilil ,,2,1,1log22)(2
)()(∈+=′ − , (17)

Using this methodology, the function)(log)(2 iiP ≥′ for all
i 1. To avoid the complexity of computing these values in
real-time, they can be pre-computed and stored in a table
using only 144 x 4 bytes of memory for the F(144, 28)
example. Using a similar methodology for approximating
Q(k), we get:

() []∈−

=
=′

=

− mkj

k
kQ jl

k

j

jl ,,2,1log22

1,0
)(

2
)(

2

)(, (18)

This guarantees that
=

≤′ k

j
jkQ

1 2)(log)(so that the

contribution of Q'(k) will guarantee),(),(ksFksF ≥′ . Like
P'(i), Q'(k) can be pre-computed and stored in a table using
only 28 x 4 bytes of memory for the F(144, 28) example.
For defining R'(t), we need to first define t as:

)()(),(
1

kQiPkst
s

ksi

′−′=
+−=

. (19)

With P'(i) and Q'(k) defined above, t is preferably a 32 bit
number with an 8 bit unsigned integer component ti and a 24
bit fractional component tf. Using this, we can derive

tttR 2)(exp)(2 =≈′ by letting fi ttt += and then taking the

inverse logarithm base 2 to yield fi ttt 222 = . We then use a
Taylor series expansion to estimate the fractional component

to the desired precision, represented by ft
fT 2= , truncating

the result using a shift and the floor function, and then
appropriately shifting the result to form a multi-precision
result (with only l significant bits), such that:

f
llt TtR i 22)(−=′ . (20)

Empirically it has been found for n = 144, and m = 28,
using l(i) = 21 in (17), l(j) = 14 in (18), and l = 19 in (20)
results in),(ksF ′ which satisfy (7). The number of bits M
needed to encode is now given by

 M
nm

d

ddmDdnFN 22),(),(
),min(

1
≤′=

=
, (21)

where D(m,d) is identical to the one defined in (4), i.e., the
actual combinatorial function F instead of the approximate
F ′ are used for coding of magnitudes. For m = 28, D(m,d) is
typically less than 31 bits and hence does not require multi-
precision operations. For large m, when D(m,d) is greater
than 31 bits, F ′ can be used for generating D(m,d).

 It turns out when the above approximate combinatorial
functions are used for the encoding purpose, the number of
bits for n = 144, m = 28 is 131, and for n = 144, m = 23 is
114, which are same numbers of bits needed when precise
combinatorial functions are used in FPC.

To preserve a property of),(ksF , define
),(),(ksFkssF ′=−′ . With this definition, it can be

verified that if),(ksF ′ satisfies (7) then),,(usF ′ where
,ksu −= also satisfies (7), i.e.,

)1,1(),1(),(−−′+−′≥′ usFusFusF .
The functions)(nP′ and Q'(k) are pre-computed and

stored in the memory. Here we state few properties as
lemmas which can be used to compute)(iP′ for any given
function)(tR′ and predefined Q'(k).

Lemma 1: If t
i

t ttR 2))(1()(2 ⋅−≥′≥ ε , where 1)(<itε ,
then),(ksF ′ defined using

−−
++−′

=′
−−−−

−≤≤))(1(log
)21(log)(max)(

2

),1()1,1(
2

)1,min(1 i

jstjst

smj t
jsP

sP
ε

satisfy the property defined in (7).
Lemma 2: The function)(tR′ defined in (20)

satisfies t
i

t ttR 2))(1()(2 ⋅−≥′≥ ε , where itl
it

−− += 22)(ε .

2. ENCODING OF MDCT COEFFICIENTS

The EVRC-WB [4], which is a split band codec, uses code
excited linear prediction (CELP) for coding the low band
speech (0-4 kHz), and a low bit rate bandwidth extension
method for the high band (4-7 kHz). To improve the
performance of the codec for music-on-hold and other non-
speech audio signal, a low band audio coding mode using
the modified discrete cosine transform (MDCT) [4] of the
linear predictive residual has been included in the standard.
The block diagram of the audio coding mode is shown in
Figure 1. Quantizing the residual MDCT coefficients is
performed using the proposed FPC method. The 144
residual spectrum lines (only 144 coefficients of 160 are
quantized) are quantized using 28 or 23 pulses depending on
whether the coding is done for narrow band or wide band
input, respectively.
 The energy scaled version of residual lines Xk is coded
such that:

{ }
143

0

round m k
k

m Xγ
=

= , (22)

where m is a global scale factor, m is the number of unit
magnitude pulses, and the range 0 to 143 corresponds to the
frequency range 0 to 3600 Hz. The value of m used to
achieve the above is determined iteratively by increasing or
decreasing m depending on whether the summation in (22)
is less than or more than m.

I 291

Table 1: Subjective Performance of EVRC for Narrowband
Music Signals at 8.5 kbps [5]

Codec Source PCM Speech Mode Audio Mode
MOS 3.67 2.39 3.22

qA

Figure 1: Block diagram of the Generic Audio coding mode of
the EVRC-WB standard

3. RESULTS

Table 1 shows the improvement in subjective performance
of the narrowband generic audio coding mode of EVRC
using the proposed MDCT quantization technique for
coding music signals relative to the speech coding mode at
an equivalent bit rate (i.e., 8.5 kbps). These listening tests
were conducted for the performance characterization of
EVRC-WB codec for 3GPP2 [5].
 Table 2 shows the complexity reduction associated with
the proposed approximate function computation as
compared to the precise function computation when these
function are used in FPC. For different values of m and n,
the associated number of bits M is given. For these
examples, the frame length interval is 20 ms, which
corresponds to a rate of 50 frames per second. The unit of
measure for the complexity comparison is weighted millions
of operations per second, or WMOPS. A computer
simulation was used to produce an estimate of the
complexity as it would be executed on a limited precision
fixed point DSP. For these examples, each primitive
instruction was assigned an appropriate weighting. For
example, multiplies and additions, were given a weight of
one operation, while primitive divide and transcendental
(e.g., 2x) operations were given a weight of 25 operations.
From the table, it is easy to see that using F'(s, k) provides
significant complexity reduction over using F(s, k), and that
the proportional reduction in complexity increases and n and
m increase. This complexity reduction is shown to be as high
as two orders of magnitude for the F(144, 60) case, but
would continue to grow as n and m increase further. This is
primarily due to the growth in precision of the operands that
is required to carry out exact combinatorial expressions for
F(s, k). These operations prove to result in an excessive
complexity burden and virtually eliminate factorial pulse
coding as a method for coding vectors having the potential
for large m and n. The proposed method solves these

problems by requiring only single cycle low precision
operations coupled with a small amount of memory storage
to produce approximations of the complex combinatorial
expressions required for this type of coding.

Table 2: Complexity comparison of F (s,k) and F(s,k)

4. CONCLUSIONS

A very low complexity method for approximation of
combinatorial functions has been proposed. It has been
shown that the approximate functions satisfy a property
which preserves unique decode-ability of factorial packing
encoding/decoding algorithm when these functions are
substituted in place of standard combinatorial functions in
FPC encoding/decoding algorithms. The low complexity
computation of these functions enables use of FPC in
encoding of 144 MDCT coefficients using 28 unit
magnitude pulses for the audio coding mode of an EVRC-
WB speech coding standard.

5. REFERENCES

[1] J.P. Ashley, E.M. Cruz-Zeno, U. Mittal, W. Peng,
“Wideband coding of speech using a scalable pulse
codebook,” IEEE Workshop on Speech Coding, pp.148-
150, Sept. 2000.

[2] A.C. Hung, E.K. Tsern, T.H. Meng, “Error-Resilient
pyramid vector quantization for image compression,” IEEE
Trans. on Image Processing, pp.1373-1386, Oct. 1998.

[3] U. Mittal, J. P. Ashley, E. M. Cruz-Zeno, “Coding
unconstrained FCB excitation using combinatorial and
Huffman codes,” IEEE Workshop on Speech Coding, pp.
129-131, Oct. 2002.

[4] “Enhanced Variable Rate Codec, Speech Service
Options 3, 68, and 70 for Wideband Spread Spectrum
Digital Systems,” Document 3GPP2 C.P0014-C, Version
0.4, Sept. 2006.

[5] http://www.3gpp2.org

Using F(s, k) Using F'(s, k)

n m Bits Peak
WMOP

S

Avg
WMOPS

Peak
WMOPS

Avg
WMOPS

54 7 35 0.44 0.32 0.09 0.07
144 28 131 24.50 16.45 0.51 0.37
144 44 180 76.45 46.65 0.96 0.64
144 60 220 150.00 83.25 1.50 0.90

I 292

