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ABSTRACT 

Factorial pulse coding, a method which is known to 
efficiently code an information signal using unit magnitude 
pulses, involves computation of combinatorial functions. 
These computations are highly complex as they require 
many multiply and divide operations on multi-precision 
numbers, especially when the length of a signal is large or 
many unit magnitude pulses are used for coding. In this 
paper, we propose a very low complexity method for 
approximation of these combinatorial functions. The 
approximate functions satisfy a property which preserves 
unique decode-ability of the factorial packing 
encoding/decoding algorithm. The low complexity 
computation enables use of factorial packing in 
encoding/decoding of 144 MDCT coefficients using 28 unit 
magnitude pulses for the audio coding mode of the EVRC-
WB speech coding standard without affecting the number of 
bits required for coding.         

Index Terms—factorial packing, factorial pulse coding, 
enumeration, MDCT, audio coding  

1. INTRODUCTION 

Factorial pulse coding (FPC) [1] is an enumerative method 
for coding a vector x = {x0, x1, ..,xn-1}  satisfying 
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and all values of vector xi are integral valued such that 
mxm i ≤≤− , where m is the total number of unit amplitude 

pulses, and n is the vector length. The )(log2 NM =  bits 
are used to code N combinations in a maximally efficient 
manner [1,2], such that the following expression, which 
describes the theoretical minimum number of combinations, 
holds true: 
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For this equation, F(n, d) is given by: 
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D(m,d) are the number of combinations of d non-zero vector 
elements given m total unit pulses given by: 

)1,1(),( −−= dmFdmD ,                                    (4) 
and 2d represents the combinations required to describe the 
polarity (sign) of the d non-zero vector elements. In the FPC
method, the information content is divided into four 
constituents: 1) number of non-zero pulse positions (ν); 2) 
position of the non-zero pulses (π); 3) magnitude of the non-
zero pulses  (μ); and 4) signs of the non-zero pulses (σ). The 
encoding of pulse positions in FPC is given by   
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where  π = {p1, p2,…, pn}. 
        The magnitude of non-zero pulses is coded using (5) 
iteratively. Details of the encoding can be found in [1,3]. 
Decoding  from the code C requires finding the smallest 
value of s such that ),( ksF is greater than a given constant. 
This procedure is repeated  times. Efficient encoding and 
decoding requires low complexity computation of F(s,k). 
F(s,k) is generally computed left to right using the following 
expression: 
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         This requires k-1 multiplications and k-1 divisions. 
Smaller values of n and m, such as n = 54 and m  7 which 
is used in coding of fixed codebook excitation in the EVRC-
WB codec, do not cause any unreasonable complexity 
burden. However, larger values can quickly cause problems 
as these operations are then performed over a multi-
precision number. For example, use of this coding method 
for audio coding with n = 144 and m = 28  requires 28 
multiply and divide operations over a 99-bit number.  This 
complexity burden can be reduced by storing these functions 
in memory using methods proposed in [3]. However, the 
memory requirement for large values of n and m may be 
prohibitive, especially for use in handheld devices, such as a 
cellular phone.   
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        In this paper, we propose using approximations of the 
combinatorial functions instead of exact combinatorial 
functions in FPC. These approximate functions can be 
computed at very low complexity using operations on finite 
precision numbers (< 32 bits) and with very low memory 
requirements. We will show that if these functions satisfy a 
certain property, then the resulting codeword is uniquely 
decodable using the encoding/decoding algorithm of FPC.    

2.  FACTORIAL PULSE CODING USING 
APPROXIMATE COMBINATORIAL FUNCTIONS 

As mentioned in Section 1, FPC uses (5) for encoding the 
pulse positions and magnitudes. The decoding process 
requires finding the smallest value of s such that ),( ksF is 
greater than a given constant. We want to construct an 
approximate function ),( ksF ′  such that using these 
functions, the encoding method of (5), and the same FPC 
decoding algorithm can be used. First, we state and prove a 
property which is a sufficient condition for this replacement, 
and then present an algorithm to compute such functions.  
Uniqueness Theorem: If ),( ksF ′ satisfy  
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then ),( ksF ′  can be substituted in the encoding/decoding 
algorithms of FPC to form a codeword which is uniquely 
decodable.  
Proof:  We assume that ),( ksF ′  satisfies the property given 
in (7). Since the decoding process of FPC finds the location 
of the kth  pulse by  finding the smallest value of s  k such 
that ),( ksF ′ is greater than a given constant. Thus, if the 
maximum codeword for k pulses occupying position 0 to s-1 
is less than ),( ksF ′ then s-1 can be decoded as the occupied 
position. The maximum such codeword, using (5) and the 
fact that for a given j, ),( jrF ′ is a non-decreasing function 
of r (from  (7)), is  given by: 
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Thus for correct decoding, 
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Since ),( ksF ′  is a non-negative integer, the above 
expression is equivalent to: 
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Consider first the case where ks = . In (10), replacing 
)1,( +−−′ jkjkF  = 0, we get: 
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 Repeatedly applying the inequality in (7) for ks = , we get: 
1)0,0()...2,2()1,1(),( =′≥−−′≥−−′≥′ FkkFkkFkkF (12) 

From (12) we can see that (7) implies (9) for ks = .  Now 
let us look at s > k, again repeatedly applying inequality in 
(7), we get 
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Similarly as in (12), for ks > , we can show that 
1)0,( ≥−′ ksF . This combined with (13) shows that (10) is 

also true if (7) is satisfied. 

In order to describe the generation of ),( ksF ′ , let us 
proceed by first deriving a function ),( ksF ′ that is a suitable 
approximation of F(s, k). The first step is to take the 
logarithm of an arbitrary base a of (3), and taking the 
inverse log base a of the rearranged terms: 
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where the function expa(t) = at. Next, define functions P(i), 
Q(k), and R(t), and substitute into (14) such that: 
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t
a attR == )(exp)( .  Clearly, F(s,k) can be precisely 

computed using (14) and (15) provided the logarithm in (14) 
has multi-precision output and the exponential function in 
(15) has both multi-precision input and output. Thus, such 
an approach may not be conducive for exact computation of 
combinatorial function.  
      We will now investigate using a similar approach for 
computing approximations of combinatorial functions
without using multi-precision logarithm and exponential 
functions. Besides having low complexity computation, 
these functions should also satisfy Uniqueness Theorem (7).  
      Referring back to (15), we now wish to generate F'(s, k) 
by creating the functions P'(i), Q'(k), and R'(t), with low 
complexity approximations of the original functions, P(i), 
Q(k), and R(t), respectively,  such that: 
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      Considering P(i), we may wish to approximate the 
function such that [ ]niiiP a ,,2,1),(log)( ∈≥′ . If we 
choose a = 2 and then restrict P'(i) to 32 bits of precision, 
the resulting operations are easy to implement on a handheld 
mobile device since most DSPs support efficient 32 bit 
additions. Therefore, we define: 
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Using this methodology, the function )(log)( 2 iiP ≥′  for all 
i  1. To avoid the complexity of computing these values in 
real-time, they can be pre-computed and stored in a table 
using only 144 x 4 bytes of memory for the F(144, 28) 
example. Using a similar methodology for approximating 
Q(k), we get: 
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contribution of Q'(k) will guarantee ),(),( ksFksF ≥′ . Like 
P'(i), Q'(k) can be pre-computed and stored in a table using 
only 28 x 4 bytes of memory for the F(144, 28) example. 
For defining R'(t), we need to first define t as:  
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With P'(i) and Q'(k) defined above, t is preferably a 32 bit 
number with an 8 bit unsigned integer component ti and a 24 
bit fractional component tf. Using this, we can derive 

tttR 2)(exp)( 2 =≈′  by letting fi ttt +=  and then taking the 

inverse logarithm base 2 to yield fi ttt 222 = . We then use a 
Taylor series expansion to estimate the fractional component 

to the desired precision, represented by ft
fT 2= , truncating 

the result using a shift and the floor function, and then 
appropriately shifting the result to form a multi-precision 
result (with only l significant bits), such that: 

f
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Empirically it has been found for n = 144, and m = 28, 
using l(i) = 21 in (17), l( j) = 14  in (18), and l = 19 in (20)  
results in ),( ksF ′  which satisfy (7). The number of bits M
needed to encode is now given by 
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where D(m,d) is identical to the one defined in (4), i.e., the
actual combinatorial function F instead of the approximate 
F ′ are used for coding of magnitudes. For m = 28, D(m,d) is 
typically less than 31 bits  and hence does not require multi-
precision operations. For large m, when D(m,d) is greater 
than 31 bits, F ′ can  be used for generating D(m,d).  

      It turns out when the above approximate combinatorial 
functions are used for the encoding purpose, the number of 
bits for n = 144, m = 28 is 131, and for n = 144, m = 23 is 
114, which are same numbers of bits needed when precise 
combinatorial functions are used in FPC.   

To preserve a property of ),( ksF , define 
),(),( ksFkssF ′=−′ .  With this definition, it can be 

verified that if ),( ksF ′  satisfies (7) then ),,( usF ′  where 
,ksu −=  also satisfies (7), i.e., 

)1,1(),1(),( −−′+−′≥′ usFusFusF .  
The functions )(nP′ and Q'(k) are pre-computed and 

stored in the memory. Here we state few properties as 
lemmas which can be used to compute  )(iP′  for any given 
function )(tR′  and predefined Q'(k). 

Lemma 1: If t
i

t ttR 2))(1()(2 ⋅−≥′≥ ε , where 1)( <itε ,  
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satisfy the property defined in (7).
Lemma 2: The  function )(tR′ defined in (20) 

satisfies t
i

t ttR 2))(1()(2 ⋅−≥′≥ ε , where itl
it

−− += 22)(ε .
   

2. ENCODING OF MDCT COEFFICIENTS 

The EVRC-WB [4], which is a split band codec, uses code 
excited linear prediction (CELP) for coding the low band 
speech (0-4 kHz), and a low bit rate bandwidth extension 
method for the high band (4-7 kHz). To improve the 
performance of the codec for music-on-hold and other non-
speech audio signal, a low band audio coding mode using 
the modified discrete cosine transform (MDCT) [4] of the 
linear predictive residual has been included in the standard. 
The block diagram of the audio coding mode is shown in 
Figure 1. Quantizing the residual MDCT coefficients is 
performed using the proposed FPC method. The 144 
residual spectrum lines (only 144 coefficients of 160 are 
quantized) are quantized using 28 or 23 pulses depending on 
whether the coding is done for narrow band or wide band 
input, respectively.   
 The energy scaled version of residual lines Xk is coded 
such that: 
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where m is a global scale factor, m is the number of unit 
magnitude pulses, and the range 0 to 143 corresponds to the 
frequency range 0 to 3600 Hz.  The value of m used to 
achieve the above is determined iteratively by increasing or 
decreasing m depending on whether the summation  in (22) 
is less than or more than m.  
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Table 1: Subjective Performance of EVRC for Narrowband 
Music Signals at 8.5 kbps [5] 

Codec Source PCM Speech Mode Audio Mode 
MOS 3.67 2.39 3.22 

qA

Figure 1: Block diagram of the Generic Audio coding mode of 
the EVRC-WB standard 

3. RESULTS 

Table 1 shows the improvement in subjective performance 
of the narrowband generic audio coding mode of EVRC 
using the proposed MDCT quantization technique for 
coding music signals relative to the speech coding mode at 
an equivalent bit rate (i.e., 8.5 kbps). These listening tests 
were conducted for the performance characterization of 
EVRC-WB codec for 3GPP2 [5].
       Table 2 shows the complexity reduction associated with 
the proposed approximate function computation as 
compared to the precise function computation when these 
function are used in FPC. For different values of m and n, 
the associated number of bits M is given. For these 
examples, the frame length interval is 20 ms, which 
corresponds to a rate of 50 frames per second. The unit of 
measure for the complexity comparison is weighted millions 
of operations per second, or WMOPS. A computer 
simulation was used to produce an estimate of the 
complexity as it would be executed on a limited precision 
fixed point DSP. For these examples, each primitive 
instruction was assigned an appropriate weighting. For 
example, multiplies and additions, were given a weight of 
one operation, while primitive divide and transcendental 
(e.g., 2x) operations were given a weight of 25 operations. 
From the table, it is easy to see that using F'(s, k) provides 
significant complexity reduction over using F(s, k), and that 
the proportional reduction in complexity increases and n and 
m increase. This complexity reduction is shown to be as high 
as two orders of magnitude for the F(144, 60) case, but 
would continue to grow as n and m increase further. This is 
primarily due to the growth in precision of the operands that 
is required to carry out exact combinatorial expressions for 
F(s, k). These operations prove to result in an excessive 
complexity burden and virtually eliminate factorial pulse 
coding as a method for coding vectors having the potential 
for large m and n. The proposed method solves these 

problems by requiring only single cycle low precision 
operations coupled with a small amount of memory storage 
to produce approximations of the complex combinatorial 
expressions required for this type of coding. 

Table 2: Complexity comparison of F (s,k) and F(s,k) 

4. CONCLUSIONS 

A very low complexity method for approximation of 
combinatorial functions has been proposed. It has been 
shown that the approximate functions satisfy a property 
which preserves unique decode-ability of factorial packing 
encoding/decoding algorithm when these functions are 
substituted in place of standard combinatorial functions in 
FPC encoding/decoding algorithms.  The low complexity 
computation of these functions enables use of FPC in 
encoding of 144 MDCT coefficients using 28 unit 
magnitude pulses for the audio coding mode of an EVRC-
WB speech coding standard.   
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Using F(s, k) Using F'(s, k) 

n m Bits Peak 
WMOP

S 

Avg 
WMOPS 

Peak 
WMOPS 

Avg 
WMOPS 

54 7 35 0.44 0.32 0.09 0.07 
144 28 131 24.50 16.45 0.51 0.37 
144 44 180 76.45 46.65 0.96 0.64 
144 60 220 150.00 83.25 1.50 0.90 
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