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ABSTRACT

Classic methods for sinusoidal analysis rely on partial tracking, a
technique where successive sets of spectral peaks of an audio signal
must be properly associated in time. The resulting tracks describe,
in terms of amplitude and frequency, the continuous evolution of the
so-called partials which, combined, model the complex sounds emit-
ted by a given instrument. A well-known challenge in this context is
preserving amplitude and frequency coherence in the tracking mech-
anism, specially in cases where failure in peak detection may occur,
or perhaps in the event of crossing partials. This paper presents a new
decision-directed recursive least-squares (RLS) estimation method
for frequency and amplitude tracking in sinusoidal analysis. Differ-
ent performance measurements show that the proposed deterministic
algorithm outperforms some procedures currently found in the liter-
ature.

Index Terms— Sinusoidal modelling, Partial tracking, Linear
prediction, Adaptive ltering

1. INTRODUCTION

Audio signals are usually termed musical for their inherent tonal
characteristics. Loosely speaking, one could label tonal those sounds
exhibiting an identi able pitch (in the sense of perceived frequency),
to which a musical note could possibly be assigned. For such well-
behaved sounds, it is possible to assume a certain degree of time-
periodicity, so that the resulting spectrum of music signals tends to
present spectral peaks at the frequencies of each individual signal
component. Obviously, in practice we are limited to a short-time
description of sinusoidal partials, which gives rise to an approach
usually referred to as sinusoidal modelling [1].

Sinusoidal analysis of audio signals can be linked to a variety of
applications, such as automatic transcription of music, music infor-
mation retrieval, audio compression, or recording restoration. Of-
ten associated to a synthesis procedure, the sinusoidal analysis com-
prises not only detection, but also identi cation and organization of
spectral peaks along the time axis. As a consequence, the tonal
part of the signal can be described by a set of continuous spectral
lines, so-called tracks. Each line is in turn represented by a vec-
tor sequence, consisting of amplitude-frequency pairs obtained from
time-contiguous spectral peaks within a determined time frame.

Besides handling errors in the detection of spectrum maxima, an
ef cient tracking mechanism must preserve coherence even in ex-
ceptional scenarios, as for instance, the ones characterized by tremoli,
vibrati, glissandi, or the not uncommon occurrence of crossing lines.
Moreover, a robust method for partial tracking normally includes a
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sequence of heuristics in order to tackle these issues [2], which can
be further improved via standard linear prediction techniques [3, 4].
Other alternatives include the use of HMM [5].

The present work describes a new decision-directed recursive
least-squares (RLS) method for estimating the successive amplitude-
frequency pairs, under both decoupled and joint estimation scenar-
ios. Based on different performance measurements, it is veri ed that
the proposed deterministic algorithm can outperform both the clas-
sical procedure based on the McAulay & Quartieri (MQ) algorithm
as well as a recent stochastic approach based on the Burg method.

2. SINUSOIDAL MODELLING

Sinusoidal modelling describes a signal x(n) as a sum of amplitude-
and (phase- or) frequency-modulated sinusoids:

x(t) =
L∑

l=1

Al(t) sin Φl(t), (1)

Φl(t) = Φl(0) +

∫ t

0

ωl(u)du. (2)

In this description, the continuous nature of the amplitude Al(t) and
angular frequency ωl(t) leads to a computationally intractable prob-
lem. In order to simplify the analysis, (1) is commonly replaced by
a discrete model

x[n] =

L∑
l=1

Al[n] sin Φl[n], (3)

which can be further considered short-time stationary in amplitude
and frequency. That is, for a given partial l, given that Al[n] and
Φl[n] are low-pass narrow-bandwidth time series, one assumes that
Al[n] ≈ Al and Φl[n] ≈ Ωln+Φl[0], where Al and Ωl are constant
values, during a time interval of N samples.

Figure 1 illustrates a simpli ed block diagram of a typical partial
tracking based sinusoidal analysis system [2].

Peak Partial
Lines

Time / Frequency 
     Mapping Detection Trackingx[n] Spectral

Fig. 1. The three steps of a sinusoidal analysis system.

The ‘time / frequency mapping’ performs a short-time Fourier
transform (STFT) [6] analysis on the audio signal at prede ned hops
H ≤ N . The spectrum of each time-windowed frame is then sub-
mitted to the ‘peak detection’ step, which identi es a set of local
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maxima, each of them possibly corresponding to a stationary sinu-
soidal component of the signal [2]. Finally, a ‘partial tracking’ pro-
cedure is responsible for validating the extracted peaks which build,
frame by frame, the model spectral lines.

2.1. The Fundamental Partial Tracking Algorithm

The most widely known algorithm for partial tracking is the so-
called McAulay & Quatieri (MQ) algorithm, originally proposed in
a speech analysis context [7] and independently developed for audio
analysis [8].

The partial tracking algorithm is responsible for identifying the
moments when individual partials emerge or vanish, as well as nd-
ing their best continuation. Of course, the primary criterium for track
continuation is the frequency proximity of two peaks in consecutive
frames. Since the number of detected peaks may vary from frame
to frame, the underlying algorithm must be prepared to solve occa-
sional con icts. To this end, the MQ algorithm is further re ned and
extended in [8].

The term ’track’ normally refers to a set of frequency, amplitude
and, if necessary, phase information of time-contiguous, supposedly
related spectral peaks. In the MQ algorithm, every peak is always
associated to a track, which in turn can be cast into one of the fol-
lowing statuses: emerging and evolving (active tracks), or vanishing
(inactive track).

Now, to each track i in frame k with corresponding peak fre-
quency fi[k], the algorithm assigns the closest peak j, detected at
frequency fj [k+1]), such that |fj [k+1]−fi [k]| ≤ Δf . If two tracks
dispute the same peak, the closest one wins the dispute, whereas
the losing track searches for the next closest peak. If a peak is not
assigned to any pre-existing track, an associated emerging track is
created. After E frames in the emerging status, a track changes to
evolving, otherwise it is discarded. If a track does not nd any peak
in frame k +1, it is labelled as vanishing, and its current magnitude-
frequency pair is copied to the next frame. If the track remains in
this status during a sequence of S frames, then it is considered inac-
tive, and hence extinguished from the frame it entered the vanishing
status.

Note that a proper setup for the parameters {Δf, E, S} is cru-
cial for the performance of the tracking algorithm. The Δf param-
eter controls the maximum frequency variation allowed, and is usu-
ally frequency dependent; Δf = 0.03fi(k) is a common choice,
since it corresponds to a quarter-tone. The E parameter is responsi-
ble for removing short tracks, in case these are formed by wrongly
identi ed peaks. On the other hand, the S parameter avoids track
discontinuation as a consequence of missing peaks.

Recent results towards improving partial tracking capability have
been reported in [4]. In the latter, a stochastic linear prediction
method based on the Burg algorithm has shown to be notably use-
ful, specially in situations where crossing spectral lines appear. We
now propose a deterministic linear estimation procedure for partial
tracking.

3. ADAPTIVE-FILTER SOLUTION

Adaptive ltering [9] is usually performed by a digital lter structure
whose coef cients can be adjusted along the time according to some
optimization criterium. This approach applies to any situation when
the ltering action must adapt itself to a time-variant environment.
A typical adaptive system can be seen in Figure 2.

The error signal e[n] is the difference between the output signal
y[n] =

∑M
m=0 wm[n]x[n −m] (for an FIR lter of order M ) and

y[n]

d[n]

e[n]
x[n] w [n]

Fig. 2. A general adaptive ltering system.

a given desired signal d[n]. As the input signal x[n] evolves, the l-
ter coef cients wm[n] are sequentially updated in order to minimize
some error-based function. In particular, choosing d[n] = x[n + 1]
turns the system into a predictor which estimates the next signal sam-
ple by x̂[k + 1] = y[k].

An important design concern is the choice of the optimization
algorithm, which ultimately dictates solution biasing, convergence
speed etc. The most common algorithms can be roughly grouped in
two families: the stochastic least-squares, e.g. the Burg algorithm;
and the exact deterministic least-squares, e.g. the recursive least-
squares (RLS) algorithm.

3.1. Track Predictor & Builder

In this section, we propose a regularized recursive least-squares pro-
cedure for predicting the amplitude and frequency of each partial on
a frame-by-frame basis. In this context, two prediction schemes are
devised: a) a single predictor which jointly estimates the amplitude
and frequency of the next peak; b) two independent predictors, for
amplitude and frequency, respectively.

Decider
RLS

Predictor

ei[k]

Ai[k],f i[k]

f i[k − 1]

Âi[k],f̂i[k]

A[k]

f [k]

Ai[k − 1]

Fig. 3. Proposed prediction scheme for track i at frame k.

The proposed scheme can be seen in Figure 3. For a given track
i, predicted values of magnitude (Âi[k]) and frequency (f̂i[k]) help
to choose the best track continuation, once the most prominent spec-
tral peaks of the signal at frame k (stored in magnitude-vector A[k]
and frequency-vector f [k]) have been detected. A decision heuris-
tics, to be de ned further ahead, selects magnitude Ai[k] and fre-
quency f i[k] as valid values. These decisions are used as inputs
to a J-th order predictor, which produces the best linear estimates
Âi[k + 1] and f̂i[k + 1] for frame k + 1, and so on.

De ning the output vector yi[k] =
[

Âi[k + 1] f̂i[k + 1]
]

and the input vector xi[k] =
[
A

T
i [k] f

T
i [k] ]

]
, with

Ai[k] = [Ai[k] Ai[k − 1] · · · Ai[k − (J − 1)]]T (4)

f i[k] = [f i[k] f i[k − 1] · · · f i[k − (J − 1)]]T , (5)

one can write
yi[k] = xi[x]Wi[k], (6)
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where Wi[k] is a 2J × 2 coef cient-matrix.
Given a judicious choice of α > 0 and a forgetting factor 0 <<

λ ≤ 1, the exponentially-weighted regularized least-squares prob-
lem [10] seeks the matrix Wi[k] that minimizes

λk+1WT
i [k]Π−1

J Wi[k] +
k∑

l=0

λk−l ‖di[l]− xi[l]Wi[k]‖2 , (7)

where di[k] =
[
Ai[k + 1] f i[k + 1]

]
is the desired-signal vector,

and Π−1
J = α−1IJ .

The solution at frame k can be computed via the following re-
cursions:

γi[k] = (1 + λ−1xi[k]Pi[k − 1]xT
i [k])−1 (8)

gi[k] = λ−1Pi[k − 1]xT
i [k]γi[k] (9)

e′i[k] = di[k]− xi[k]Wi[k − 1] (10)

Wi[k] = Wi[k − 1] + gi[k]e′i[k] (11)

Pi[k] = λ−1Pi[k − 1]− gi[k]gT
i [k]γ−1

i [k] (12)

The coef cient-matrix can be explicitly de ned as

Wi[k] =

(
wi,AA wi,fA

wi,Af wi,ff

)
, (13)

where each vector wi,bc conveys the effect of c over the prediction
of b, each one given by either magnitude or frequency. This scheme
considers both magnitude and frequency information into the pre-
diction of each other. This is expected to work out in improving the
performance of the predictor, considering that both parameters are
ultimately controlled at the same time by the music performer.

However, depending on the type of sound source, or even on the
noise contamination level, the signal amplitude may behave more
unpredictably than the corresponding frequency, thus impairing the
estimation of the latter. For these cases, an alternative uncoupled
structure can be straightforwardly obtained by simplifying the struc-
ture of the solution to

Wi[k] =

(
wi,AA 0

0 wi,ff

)
. (14)

Observe that no cross-information between frequency and amplitude
evolution of the partial is shared. As a consequence, the orders JA

and Jf of magnitude and of frequency estimators can be made dif-
ferent, if necessary.

3.2. Decision Heuristics

As it was mentioned earlier, a decision must be made on which
amplitude-frequency pair is the most likely to belong to a track.
This can be accomplished quite similarly to the strategy described
in Section 2.1 and the method proposed in [4]. First, a group of can-
didate peaks is formed by the elements of f [k] and A[k], such that
|f̂i[k] − f [k]| ≤ Δf . Then, the candidates are sorted according to
a mixed metric consisting of a linear combination of amplitude and
frequency square errors, given by the relative differences between
their predicted and detected values. The peak showing the smallest
distance to its predicted counterpart is then chosen as the one to con-
tinue the track. When a peak is not assigned to any track, a new track
is created. During the rst qJ frames, q ≥ 1, the predicted results
are simply discarded, while the samples are shifted in and the lter is
trained. The treatment of these emerging as well as vanishing tracks
follows the same lines described in Section 2.1.

In the next section, the performance of the proposed strategy is
assessed under real conditions.

Table 1. Comparison of re-synthesized signals under PEAQ.

MQ Burg Coupled RLS Unc. RLS
PEAQ -2.415 -1.910 -1.208 -0.975

4. COMPUTER SIMULATIONS

Assessing the performance of a partial tracking algorithm under prac-
tical circumstances is not trivial, since it constitutes part of a more
general analysis system. A typical setup is used throughout this sec-
tion: after segmenting the signal using a 1023-point Hann window,
a time/frequency mapping is performed via 4096-point DFTs com-
puted at 512-sample hops; frequency reassignment [11] is used to
re ne the instantaneous frequency estimation; nally, a peak detec-
tion stage employs a variable-threshold strategy.

The following experiments are based on real audio signals, and
aim to compare the two versions of the proposed algorithm against
the classical partial tracking method of Section 2.1 and the method
based on the Burg predictor, described in [3]. The Burg estimator [9]
minimizes a stochastic objective function composed by the sum of
the mean-square forward- and backward- prediction errors. It can be
alternatively implemented as a structurally minimum-phase lattice-
form adaptive lter. Its overall complexity is O(J). It should be
noticed that, although the conventional implementation of the RLS
algorithm is O(J2), its fast versions [9] can match the Burg com-
plexity.

In the rst simulation set, the music excerpt to be analyzed is the
recording of a long violin vibrato, at a sample rate of 44.1 kHz. All
methods employed S = 20, V = 5, and Δf = 5. For the predictor-
based methods we have set J = 4, except for the uncoupled RLS,
which used JA = 2 and JF = 4. These values follow approximately
previous works’ setups. Both RLS versions employed Π = 2000
and λ = 0.98, empirically chosen. Frequency prediction for every
track is performed relatively to its rst measured frequency value.
In Fig. 4, four plots of a short segment of the signal allow one to
compare the performance among the four methods. The MQ method
(Fig. 4a) often misses track continuity. The Burg method (Fig. 4b)
appears to be more robust when dealing with poorly detected peaks,
but occasionally makes wrong decisions which severely disturb the
tracks’ behavior. The proposed RLS method (Fig. 4c) shows the
most consistent performance along the signal. In particular, the joint
predictor (Fig. 4d) turned out to be the only one capable of tracking
some spectral lines.

In order to further evaluate the performance of the proposed
method, a second set of experiments has been envisioned: a sig-
nal containing crossing harmonics, consisting of a clarinet glissando
mixed with a violin vibrato, both extracted from real recordings, was
formed. This test signal was analyzed under the four approaches
above, using the same parameters of the rst experiment. It was
then re-synthesized from each sinusoidal representation and com-
pared with its original version, this time making use of the so-called
PEAQ (Perceptual Evaluation of Audio Quality) measure, de ned
by the ITU-R [12]. This measure has been originally conceived for
evaluating high-quality coded signals, and should be judiciously em-
ployed in other contexts. Even so, in the present work it can provide
some additional elements to compare the performance of the meth-
ods under analysis. The grades, ranging from 0 (for a perceptually
identical signal) to −4 (the worst admissible grade), assigned to the
signals can be found in Table 1. We can see that the RLS method
outperforms the other two techniques as to the preservation of sig-
nal integrity. Moreover, this case exempli es a situation where the
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uncoupled estimation scheme yield better performance than the joint
predictor.

5. CONCLUSION

This work presented a new approach for partial tracking, an essential
block of any sinusoidal analysis system. The method is based on a
decision-directed prediction of both magnitude and frequency via an
RLS adaptive lter, on a frame-by-frame basis. The performance of
the proposed strategy compares favorably to that of other methods
found in the literature under real circumstances. A resynthesis ex-
periment con rms the signi cant improvement achieved by the new
method, under a formal objective measure of audio quality.
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Fig. 4. Violin vibrato analysis: (a) Classic method; (b) Burg method;
(c) uncoupled RLS; (d) coupled RLS.
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