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ABSTRACT

An audio ngerprinting system identi es an audio based on a
unique feature vector called the audio ngerprint. The performance
of an audio ngerprinting system is directly related to the nger-
print that the system uses. To reduce both the DB size and the DB
search time, binary ngerprints are often used. However convert-
ing a real-valued ngerprint into a binary ngerprint results in loss
of information and leads to severe degradation in performance. In
this paper, an algorithm known as boosting is used as a binary con-
version method which minimizes the degradation. The experimental
results showed that the proposed binary audio ngerprint obtained
by boosting the spectral subband moments outperformed some of
the state-of-the-art binary audio ngerprints in the context of both
robustness and pair-wise independence (reliability).

Index Terms— Audio ngerprint, Spectral subband moment,
Boosting

1. INTRODUCTION

An audio ngerprinting system identi es an audio by rst extracting
short feature vectors called audio ngerprints from the query audio
clip and then identifying the audio whose ngerprints are closest to
the query ngerprint. The audio ngerprints of all audio are ini-
tially stored in a database (DB). The performance of an audio n-
gerprinting system, which is often measured in terms of pair-wise
independence (reliability) and robustness [1], is directly related to
the ngerprint that the system uses. Since fast large-scale search is
also essential in an audio ngerprinting system, the audio ngerprint
also needs to be as compact as possible.

Recently, many audio ngerprinting systems based on a binary
ngerprint have been proposed [2][3]. Haitsma and Kalker [2] cal-
culate the subband energy differences between adjacent frames and
then generate a binary ngerprint by quantizing the difference with a
single bit. Ke et al. [3] generalize the Haitsma and Kalker’s method
by using the pair-wise boosting which is a variant of a well-known
boosting technique called the AdaBoost [4]. The binary ngerprint
is desirable for fast DB search since it enables direct indexing instead
of a range search which is inevitable in most multimedia ngerprint-
ing systems. Direct indexing uses a look-up table or a hash table to
search the ngerprint in the DB and does not suffer from the curse of
dimensionality. However the conversion of a real-valued ngerprint
to a binary ngerprint results in loss of information and can lead to
severe degradation in performance, which comes about due to the
loss in pair-wise independence property.

In this paper, a binary audio ngerprint that is compact for a fast
DB search while minimizing the performance degradation is pro-
posed. The proposed audio ngerprint is based on the rst-order
normalized subband spectral moment [1]. The rst-order normalized

moment is known to be not only reliable but also robust against com-
mon audio processing steps including lossy compression, random
start, equalization, etc. A well-known boosting technique known as
the AdaBoost [4] is sometimes used in the audio classi cation prob-
lem to improve the performance of the classi er through learning
[6][7]. The modi ed AdaBoost algorithm [3] is used in this paper
to obtain a binary ngerprint from the rst-order normalized sub-
band spectral moment. The experimental results show that the pro-
posed audio ngerprint outperforms other state-of-the-art binary n-
gerprint in the context of audio identi cation.

The rest of the paper is organized as follows. Section 2 describes
the proposed audio ngerprint and boosting algorithm. Section 3
evaluates the performance of the proposed audio ngerprint for var-
ious distortions and compares the performance with that of other
state-of-the-art audio ngerprints. Finally, Section 4 concludes this
paper.

2. PROPOSED AUDIO FINGERPRINT

Fig. 1 shows the overall procedure to extract binary audio nger-
prints from an audio clip. First, base audio features are extracted
from the audio signal. As explained above, the rst-order normal-
ized spectral subband moment (η1) is used as the base audio feature
in this paper. Then, the base audio feature which consists of real-
valued elements is converted to a binary ngerprint. The details of
the proposed audio ngerprint are explained in the following subsec-
tions.

2.1. Normalized spectral subband moments

The νth-order moment of the mth subband in the nth frame is de-
ned as

ζν [n, m] =

C[m+1]∑
k=C[m]+1

kνP [n, k] (1)

where C[m] and P [n, k] denote the frequency boundary of themth
critical band and the short-time power spectrum of audio signal at
frequency bin k of the nth frame, respectively. Then the rst-order
normalized spectral subband moment η1[n, m] of the mth subband
in the nth frame is de ned as

η1[n, m] =
ζ1[n, m]

ζ0[n, m]
. (2)

The η1 has a range between -0.5 and 0.5 in all critical bands.
The base audio feature based on the η1 is extracted as follows.

First, an input audio is converted to mono and downsampled to 11025
Hz. Next, the downsampled signal is split into overlapping frames
windowed by Hamming window. The window size is 4096 samples
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Fig. 1. Extraction binary ngerprint from audio

(0.372 s), and the adjacent frames are overlapped by 2048 samples
(0.186 s). Then short-time Fourier transform (STFT) is applied to
each frame to obtain the spectrum. The spectrum of each frame is
divided into 16 critical bands from 300 to 5300 Hz, and nally the
η1s are computed at each critical band. As a result of the extraction,
an 16 dimensional real-valued base audio feature is obtained every
2048 samples (0.186 s).

2.2. Candidate Set for The Binary Conversion Method

The binary conversion should preserve both the robustness and the
pair-wise independence of the base audio feature. In [2], the binary
ngerprint is obtained from the subband energies as follows:

F (n, m) =

⎧⎪⎨
⎪⎩

1 if E(n, m)− E(n, m + 1)
−(E(n− 1, m)− E(n− 1, m + 1)) > 0

0 if E(n, m)− E(n, m + 1)
−(E(n− 1, m)− E(n− 1, m + 1)) ≤ 0

(3)
where F (n, m) and E(n, m) denotes the m-th bit of ngerprint of
the n-th frame and the energy of the m-th band of the n-th frame,
respectively. The binary conversion by (3) decides the binary value
as the sign of the difference between features at adjacent location in
the direction of both frequency and time.

For a more resilient and discriminative binary ngerprint, it may
be necessary to consider taking differences between adjacent fea-
tures extracted from a wider time-frequency region: the binary con-
version can be generalized to cover features from time-frequency re-
gion of different bandwidth and time-width. The difference of these
features can be taken along the time, the frequency, and both time
and frequency. These three types constitute a candidate set for nd-
ing the optimum binary ngerprint. Mathematically, the three types
of binary- ngerprint candidates for the m-th bit of the n-th frame,
Fi(n, m) (i = 1, 2, 3), can be de ned as

Fi(n, m) =

{
1 if di > Ti

0 otherwise (4)

where di and Ti denote the i-th difference formula and the i-th
threshold. The three types of difference formulas are given by

d1 = R(n, ms; N, M)−R(n + N, ms; N, M) (5)
d2 = R(n, ms; N, M)−R(n, ms + M ; N, M) (6)
d3 =

[
R(n, ms; N, M) + R(n + N, ms + M ; N, M)

]
(7)

−
[
R(n + N, ms; N, M) + R(n, ms + M ; N, M)

]
where

R(ns, ms; N, M) =
M∑

Δm=0

N∑
Δn=0

ξ(ns + Δn, ms + Δm) (8)

and ξ(n, m) denotes the subband feature of them-th band of the n-
th frame. The subscript i denotes the direction of difference (i = 1:
time(frame), i = 2: frequency(band), i = 3: both). The proposed
binary ngerprint uses the rst-order normalized spectral subband
moment as the subband feature (ξ = η1).

Since the η1s are obtained from 16 critical bands, both the band-
width, M , and the start band, ms, vary from 1 to 16. The time-
width, N , is set to vary from 1 to 13 frames (2.4 s). By considering
the three directions (i = 1, 2, or 3) and different values taken by
M , N , and ms, there are about 4,264 possible difference formulas.
All possible formulas and thresholds form a candidate set for binary
conversions. As the start frame, ns, is increased every 2048 sam-
ples, an 16-dimensional binary audio ngerprint is obtained using
16 conversion methods obtained from the candidate set.

The objective is to nd the 16 most appropriateM , N , ms, the
direction of difference (i = 1, 2, or 3), and T that give the most dis-
criminative and robust 16-dimensional binary ngerprint, F (n, m).
A learning algorithm called Boosting is used to determine the pa-
rameters. The details of the learning algorithm are explained in the
next subsection.

2.3. Pairwise Boosting

The AdaBoost [4] is a learning algorithm to produce a strong classi-
er from a number of weak classi ers. We modi ed the AdaBoost
to select 16 binary conversion methods from the candidate set de-
scribed above. A weak classi er is given by

h(x1, x2) = sgn [(d(x1)− T )(d(x2)− T )] (9)

where d(x) and {xi}
2
i=1 denote respectively the output of the differ-

ence formula on x and base features extracted from an audio. Start
frame of x is the same with ns in the difference formula. When
d(x1) and d(x2) are on the same side of threshold T , the weak clas-
si er outputs ‘+1’, predicting two audios as the same audios. When
these are on the different side of threshold, the weak classi er out-
puts ‘-1’, predicting two audios as different audios. This variant of
the AdaBoost is called Pairwise Boosting in [3].

Selecting a weak classi er is equivalent to selecting a binary
conversion method. In other words, selecting a weak classi er en-
tails choosing one difference formula out of 4,264 possible candi-
dates and selecting an appropriate threshold T . The Pairwise Boost-
ing is used to select both robust and discriminative 16 difference
formulas and those thresholds to generate an 16-dimensional binary
audio ngerprint through 16 rounds. The Pairwise Boosting is de-
scribed below:

Input
n training examples (x11, x21), ..., (x1n, x2n) with yi = +1 or −1

Initialize
weighted densities ω0,i = 1

n
, i = 1...n

Do for t = 1, ..., 16:
1. ChooseM ,N ,ms, the direction of difference (i = 1, 2, or 3),
and T that minimizes the weighted error :

εt =
∑n

i=1 ωiI[ht(x1i, x2i) �= yi]

where I[ε] = 1, if the event ε occurs; I[ε] = 0, otherwise.
2. Calculate weak hypothesis weight : ct = log ( 1−εt

εt
)

3. Update weighted densities for matching pairs: if yi = 1

ωt+1,i = ωt,i · exp[−ctht(x1i, x2i)yi/2]

4. Normalize weighted densities∑n

i:yi=−1 ωt+1,i =
∑n

i:yi=1 ωt+1,i = 1
2

All 16 selected weak classi ers are treated with same weights as
each weak classi er determines each binary component of an 16-
dimensional binary ngerprint. An experimental result shows that
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the weights of all 16 weak classi ers selected by the Pairwise Boost-
ing is almost same as shown in Fig. 2(a). The Pairwise Boosting is
asymmetric in that only the matching audio pairs are boosted [3]. So,
only the weighted densities of matching pairs are updated, in which
the weighted density is increased if the prediction by a selected weak
classi er is incorrect and the weighted density is decreased other-
wise.

3. COMPARATIVE TEST

The performance of the proposed binary audio ngerprint are eval-
uated by comparative test. The following ve binary audio nger-
prints are used in the comparative test.

1. The rst-order normalized moment with Boosting
(η1+Boosting) : A base audio feature is the rst-order nor-
malized spectral subband moment and the binary conversion
is learned by the Pairwise boosting.

2. The subband energy with Boosting
(E+Boosting) : A base audio feature is the subband energy
and the binary conversion is learned by the Pairwise boosting.

3. The subband energy with (3)
(E+3) : A base audio feature is the subband energy and the
binary conversion is de ned by (3).

4. The rst-order normalized moment with (3)
(η1+(3)) : A base audio feature is the rst-order normalized
spectral subband moment and the binary conversion is de ned
by (3).

5. The rst-order normalized moment with the sign
(η1+sign) : A base audio feature is the rst-order normalized
spectral subband moment and the binary value is determined
by the sign of each element of the base feature vector.

The rst ngerprint is the proposed ngerprint. The second n-
gerprint is similar to the ngerprint proposed in [3] in which the sub-
band energy is used as the base feature and the spatial domain lters
selected by the Boosting is applied to the base feature to generate the
binary ngerprint. The third ngerprint is same with that used in [2]
except the extraction parameters of base features: In [2], the subband
energies are extracted according to the following method: Down-
sampling to 5512.5 Hz, 2048-sample window with succesive offset
by 64 samples, and 33 critical bands from 300 to 2000 Hz. However,
both the rst-order normalized moments and the subband energies
used in all above binary audio ngerprints are extracted from audio
with down-sampling to 11025 Hz, 4096-sample window, 50% over-
lap, and 16 critical bands from 300 to 5300 Hz. Accordingly, for
an audio snippet of 5 seconds, the dimension of base feature vector
with the former extraction setting is 14,190 (430×33), whereas that
with the latter is 416 (26× 16). The fourth and fth ngerprints are
extracted from the same base feature as the proposed ngerprint uses
but converted to the binary value by different methods.

3.1. Training with Boosting

To make the binary audio ngerprint robust against the audio pro-
cessing steps common in the practical applications, the audio clips
subjected to the following ‘real world’ distortions, referring to [8],
are used in the training with boosting:

• Time shift : 92.9 ms shift.

• Volume change : Envelop tremors.
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Fig. 2. (a) Hypothesis weight determined in each round (b) Training
error of positive pairs

• Octave band equalization : Adjacent band attenuations set to
-6dB and +6dB in an alternating fashion.

• Noise addition : White noise (SNR : 25 dB).
• Echo : Filter-emulating old time radio.
• Perceptual audio coding : 96 kbps MP3 compression.

About 600 matching pairs and 600 non-matching pairs are used for
the training. The ratios of respective distortions in total train pairs
are even. Each pair consists of two music clips of 5 seconds (26
frames) considering a maximum N of 13.

Fig. 2(a) shows that all con dences of selected weak classi-
ers applied on rst-order normalized spectral subband moments are
higher than that of selected weak classi ers applied on subband en-
ergies. Fig. 2(b) shows that as the number of rounds increased, the
training error of positive pairs with the rst-order normalized spec-
tral subband moment are reduced more rapidly compared with the
subband energy. These two results indicate that the conversion from
rst-order normalized spectral subband moments to binary audio n-
gerprints is less degraded than the conversion from subband energies
to binary audio ngerprints.

3.2. Performance Evaluation

Approximately 2,000 matching pairs and 7,000,000 non-matching
pairs are tested in the performance evaluation. The test data is com-
pletely exclusive from the training data. Each pair consists of two
music clips of 9.85 seconds (52 frames). The size of the proposed
binary audio ngerprints from each clips of 9.85 seconds is just 54-
bytes (27 × 16 bits). The audio ngerprint should satisfy both the
robustness and the pair-wise independence. Therefore, for a impar-
tial comparison among the ve binary audio ngerprints, the receiver
operating characteristic (ROC) curves are obtained for each binary
audio ngerprint. The ROC curve plots the true positive (TP) rate
versus the false positive (FP) rate according to the bit error rate. The
TP rate is the rate at which matching pairs are correctly predicted as
matching pairs and is related to the robustness. The FP rate is the
rate at which non-matching pairs are incorrectly predicted as match-
ing pairs and is related to the pair-wise independence.

Fig. 3 shows the ROC curves for the distortion set. The distor-
tion set consists of all distortions that were used in the training. From
these ROC curves, the proposed algorithm (η1+Boosting) performed
best : the TP rate is the highest for a given FP rate. Fig. 4 shows
ROC curves for the respective distortions. Test data is commonly
subjected to a white background noise and a 96 kbps MP3 with the
respective distortions. All ROC curves for the proposed binary au-
dio ngerprint (η1+Boosting) and the comparable binary audio n-
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Fig. 3. ROC curves for the distortion set; A : η1+Boosting, B :
E+Boosting, C : η1+sign, D : η1+(3), E : E+(3)

gerprint (E+Boosting) in Fig. 4 show that the proposed binary audio
ngerprint (η1+Boosting) outperforms the other.

4. CONCLUSION

Having fast search capability in a large-scale database is essential
in most audio ngerprinting systems. A binary audio ngerprint is
suitable for fast search owing to the compactness as well as an ap-
propriateness for the direct indexing. In this paper, we presented a
new binary audio ngerprint based on the spectral subband moment
with boosted binary conversion. For minimizing the performance
degradation during binary conversion, boosting algorithm learned
the binary conversion from the candidate set of difference formulas.
In the train procedure, typical ‘real world’ distortions were consid-
ered, and in the comparative test, the boosted binary audio nger-
print based on the rst-order normalized spectral subband moment
outperformed the other state-of-the-art binary audio ngerprints in
terms of both robustness and pair-wise independence. Further works
will focus on the fast search algorithm including a range search and
the binary video ngerprint.
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Fig. 4. ROC curves for the respective distortions; solid line :
η1+Boosting, dot line : E+Boosting
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