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ABSTRACT

Nowadays, a large part of all music ever recorded is digitally avail-
able and due to MP3 already ten thousands of songs can be carried
around on a mobile device. Intelligent automatic song selection is
more and more required alternatively to random selection or manual
playlist generation. We propose a system, that generates playlists in-
cluding songs similar to accepted ones, discarding songs similar to
rejected ones, where similar refers to timbre. Additional adaptivity
is achieved with a user-adaptive distance function which in our case
requires modeling features separately. After a seed-song (which is
the first accepted song) is given by the user, the distance function is
used by a song selection strategy to select songs. Minimal user feed-
back is collected with a skip button that is pressed to directly jump to
the next song and explicitly reject the current one while acceptance
is implicitly given by listening to a song.

Index Terms— playlist generation, user adaptation, skipping
behavior, music similarity, music information retrieval

1. INTRODUCTION

Music data is difficult to organize, because there is no common sys-
tem everybody would agree to. This is why methods to retrieve mu-
sic from this large set of data are necessary.

One aspect of a huge collection of music pieces is that not all
songs may fit the taste or are currently of interest to a listener. The
optimal solution would be that the audio-player, e.g. a small mobile
device, would know by itself what kind of music someone wants to
listen next. However, the kind of music which is appropriate at the
moment can depend on so many factors like current mood or the
environment. These factors are difficult or impossible to model and
therefore an indirect way to observe this is to suggest music and learn
form the user reaction. This allows a form of playlist generation that
adapts to the listeners needs, which is the topic of this paper.

To generate a playlist, the system uses a seed-song, which is
selected by the user. Thenceforward, songs are automatically chosen
and played by the system. The user rates the played songs implicitly
by either skipping and thus rejecting them or accepting the choice by
just listening to the complete song. Those already classified songs
are taken into account when tracks are selected and to update the
distance function.

Playlist generation fulfilling given constraints is investigated in
[1, 2, 3], but constraints have to be defined first and rich meta-data
needs to be accessible. In [4] playlist generation is performed us-
ing music similarity based on meta-data. Complete playlists can be
scored by the user to help improving the generation process for fur-
ther playlists. Meta data and acoustic similarity are used in [5]. User
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tests have shown that compiling playlists using the help of similar-
ity leads to playlists with the same quality than manually created
ones but in much less time. Rich meta data is used in, e.g., the
Music Genome Project1, where experts analyze each featured song
for close to 400 attributes. In Gracenote playlist2 information about
genres, era of the recording artist, release date or geographical ori-
gin (taken from their database, the former CDDB, currently storing
information about over 66.000.000 songs) are used to draw relation-
ships between songs. Last.FM3 is building relationships based on
collaborative filtering techniques involving the songs played by the
millions of their users. Ordering all songs from a collection based
on audio similarity is done in [6] with the help of traveling sales-
man algorithms. A playlist generation system working only on au-
dio similarity is proposed in [7], where the playlist consists of the
n closest neighbors to a given seed-song. In a similar approach [8]
to the one proposed in this publication only acoustic similarity and
user-feedback is used to compile playlist.However, a static distance
function is used. [9] shows, that feature subsets lead to significant
improvement in perceived music similarity.

2. METHODOLOGY

Figure 1 shows an overview of the components in our system. From
each song of the database, features are extracted. The distribution
of each feature is statistically modeled, and a feature-based distance
is computed between each pair of songs on a certain feature. Based
on those feature-based distances, a global distance between songs
can be computed. This global distance is used by the song selection
strategy to select the next song that will be played, involving also
information which of the already played songs were accepted and
which were rejected by the user. Once in a while, the global distance
function is adapted to the user, using the already played songs.

We want to generate playlists, that include 19 songs similar to
the seed-song. We then have a playlist l with a total of 20 accepted
songs which comes up to the capacity of one CD. sl, the number
of rejected songs which is equal to the number of times, the skip
button was pushed during the generation process of a playlist is to
be minimized.

2.1. Database

Music similarity systems are hard to evaluate automatically, since
music similarity sensation is highly subjective. For this work, genre
affiliation is used to define similarity, which is a common principle
to evaluate large parameter spaces and was shown to be reasonable

1http://www.pandora.com
2http://www.gracenote.com/gn products/playlist.html
3http://www.last.fm
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Fig. 1. System architecture overview.

genre classical CL electronic EL jazz blues JB
#songs 320 115 26
genre metal punk MP rock pop RP world WO
#songs 45 101 122

Table 1. Distribution of the genres.

[10]. Two songs are assumed to be similar exactly if they belong to
the same genre. The database consists of the songs from the 2004
ISMIR Genre Classifi cation Contest Trainingset4. The distribution
of the songs can be seen in Table 1.

2.2. Evaluation

In a complete evaluation run, 703 playlists are generated, using each
song from the genres G = {CL,EL,MP,RP,WO} (Table 1) as
seed-song once. Songs from JB are not taken as seed-songs, since
this genre is underrepresented for including it in our evaluation mea-
sures, but they still remain in the database and can be proposed dur-
ing a playlist generation process. Two two-stage measures are de-
fi ned to evaluate the performance of the system. In the fi rst stage
the arithmetic mean (median) of the skip values sl of playlists cre-
ated with seed-songs from a certain genre is determined. If the song
selection is using a nondeterministic algorithm, this procedure is re-
peated R times and the mean (median) values are replaced by the
arithmetic mean of the resulting values of those R repetitions. In
the second stage the arithmetic mean over those genre based values
is calculated. The arithmetic mean based measure is called average
skip measure (ASM), the median based measure is called median
skip measure (MSM). This two-stage process assures that the im-
pact of a class on the measure is independent of the size of the class.
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playlistSkipN(s) returns sl, the number of skips needed to create the
playlist l using s as seed-song, Sg denotes all the songs from genre
g.

4http://ismir2004.ismir.net/genre contest/index.htm

CL EL MP RP WO (A/M)SM
mean 43.3 120.2 307.8 137.2 113.5 144.4

median 42.7 118.6 307.8 135.8 112.5 143.5

Table 2. Random baseline (genre means / medians, ASM, MSM).

Outliers, which can be songs that are very dissimilar to other
songs of their genre, or songs that are very similar to songs of an-
other genre, in some cases can lead to very high skip values for a
certain playlist. Furthermore, outliers can also be caused by prob-
lems during modeling, If the ASM value is much higher than the
MSM value, this is a sign for the influence of outliers.

ASM (MSM) values are no abstract values. ASM specifi es a
weighted average of how often the skip button needs to be pressed
to reach a playlist with 20 accepted songs and MSM specifi es a
weighted average of how often the skip button needs to be pressed at
most in half of the cases. Lower values are preferable.

Table 2 shows the genre means (median means) with the result-
ing ASM (MSM) value for a system using random song selection on
our used database. Since random selection is nondeterministic we
used R = 100. All the song selection strategies described later in
this paper use deterministic algorithms so R is set to 1.

2.3. Feature Extraction and Model Estimation

FFmpeg5 is used to convert the 128 kbit MP3 fi les from the dataset
to 16kHz 16bit mono PCM fi les. All the used features are calculated
on power spectral frames of 30s from the middle of the audio sig-
nal, which are derived using 16ms windows with 10ms shift. Mel
Frequency Cepstral Coeffi cients (MFCCs) and Mel Frequency LDA
Coeffi cients (MFLCs) are used as basic feature. MFLCs are calcu-
lated similar to MFCCs except that the cosine transform is replaced
[11] by an Linear Discriminant Analysis transform (LDA). With re-
spect to train the LDA transform, each song represents its own class,
which is then more compact and more distant from the other classes
in the transformed feature space. We are using 40 Mel bins and
extract 21 MFCCs, from which the fi rst one is disregarded, and 20
MFLCs (those with the largest eigenvalues). In addition to the basic
feature, we are using the following LDA-sidefeatures fx ∈ F , each
of them is extracted in 16 linearly spaced nonoverlapping subbands
and then LDA transformed: centroid (10), bandwidth (4), skewness
(5) and kurtosis (1), all described in [12], and flatness (4), crest fac-
tor (4), Shannon entropy (6) and Renyi entropy of order 2 (13) as de-
scribed in [13], where the number in brackets denotes the number of
kept coeffi cients after LDA which is equal to the number of Eigen-
values above an empirically determined value of 1.1. A featureset
including MFLCs and all the sidefeatures will be denoted FULL.

For each feature of each song, one multivariate normal distribu-
tion is estimated. We are using full covariance matrices.

2.4. Song Selection

For song selection, two algorithms introduced in [8] are used.
S1: The song with the smallest distance (see section 3) to any of

the accepted songs is played.
S2: From all the candidate songs (those that have not been pro-

posed by the system) a subset is chosen, containing exactly all songs
who’s nearest neighbor in the set of the already classifi ed songs was
accepted. From this subset, the one with the smallest distance to this
nearest neighbor is chosen. If there is no song in the subset, the song

5http://ffmpeg.mplayerhq.hu/
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with the best ratio of distance to the nearest accepted neighbor and
distance to the nearest rejected neighbor is chosen. This expresses
the desire to have a song close to accepted and far apart from rejected
songs.

3. THE DISTANCE FUNCTION

The distance function is used by the song selection strategy to deter-
mine the next song.

3.1. Likelihood Ratio Hypothesis Test

A likelihood ratio hypothesis test is used to compute distances be-
tween models. The null hypothesis, that observations from both
models were generated by a joined model is divided by the alter-
nate hypothesis, that both feature vector sequences were generated
by different models. As described in [14], for computation of the
likelihoods of the hypotheses it is assumed that both density func-
tions have the same mean. Since all of the models have been trained
with the same amount of samples, the computation can be simplifi ed.
We use the negative log-likelihood ratio as distance:

d(A,B) = log|
1

2
ΣA +

1

2
ΣB| −

1

2
log|ΣA| −

1

2
log|ΣB|,

where ΣA and ΣB are the covariance matrices of song A and B
respectively. In [15] the choice of the likelihood ratio hypothesis test
as distance between models is explained in detail.

3.2. Calculation of song dissimilarity

Let fx be feature x, F the complete feature set, dfx(A,B) is the
variance normalized value for the described likelihood ratio hypothe-
sis test using the models of songA and B, and wx the binary weight,
announcing whether fx is currently used or not. We use the variance
normalization to transform the distances based on features with dif-
ferent ranges to make distances on different features comparable to
eachother. The global distance D(A,B) between A and B is then
computed by:

D(A,B) =

|F |X

k=1

wkdfk(A,B)

D(A,B) then is also variance normalized over all the different fea-
ture combinations, to make combinations using less features compa-
rable to combinations using many features.

3.3. User adaptation of the global distance function

Initially, all the binary weights are set to 1. A brute force approach
is used to adapt the binary weights to the musical taste of the user,
using the +rated songs P and the -rated songs N . For each possible
feature combination, three sums are computed:

• s+, the sum over the distances of each p ∈ P to it’s nearest
neighbor in P .

• s−, the sum over the distances of each n ∈ N to it’s nearest
neighbor in N .

• s±, the sum over the distances of each p ∈ P to it’s nearest
neighbor in N .

Then, score(ω) = wps++wns−−wpns± is the score of a feature
combination ω, where wp, wn, and wpn are the adaptation weights.
The score of every possible feature combination is computed and

CL EL MP RP WO ASM/MSM
S1

MFCC 6.6 40.4 17.9 15.4 73.9 30.8/24.4
MFLC 3.0 40.3 16.0 12.6 65.5 27.5/21.6
FULL 0.9 51.8 11.6 7.0 76.7 29.6/28.2
S2

MFCC 2.6 18.5 19.3 17.7 26.2 16.9/11.2
MFLC 1.3 19.8 23.6 13.9 23.0 16.3/11.4
FULL 0.5 17.2 5.6 5.0 32.4 12.1/10.8

Table 3. MFCCs, MFLCs and FULL set, selection S1 and S2 (genre
means, ASM, MSM).

the feature combination with the smallest score is chosen - we want
s+ and s− to be small since the two classes should be compact,
and s± to be large since the two classes should be far apart from
eachother. The weights and the adaptation interval v, which denotes
how often the skip button has to be pushed until the next adaptation is
performed, are denoted in an adaptation vector < wp, wn, wpn, v >.

4. RESULTS

In table 3, the performance of MFCCs and MFLCs is compared to
the performance of FULL. ComparingMFCCs withMFLCs, MFLCs
lead to better playlists (ASM) for both selection strategies.For S2, a
performance increase from 16.3 to 12.1 ASM is observed for adding
sidefeatures to MFLCs. The sidefeatures obviously capture addi-
tional useful aspects of the audio signal, although they (like MFLCs)
all describe the spectral shape of the signal. However, performance
decreases for S1 from 27.5 to 29.6 ASM. S1, which basically leads
to worse results than S2, seems to be inapplicable when using fea-
ture spaces also including useless features, since it cannot learn from
negative examples. The difference between ASM and MSM is rather
small for the FULL set compared to the performance of the MFCC /
MFLC sets for both selection strategies, which is a sign for the FULL
set being less vulnerable to outliers. It is not surprising that the WO
genre performs worst for almost all confi gurations. WO, loosely de-
scribed by songs being non-western music is already divers by def-
inition. But since users that don’t want to listen to songs besides
songs from the world genre, but on the other hand like the complete
bandwidth of that genre are hardly to imagine, this should be no
drawback of the system.
Table 4 shows the results on the complete set for different adaptation
weights and selection S1, Table 5 shows the results in the complete
set for different adaptation weights and selection S2. It can be seen
that for < 0, 0, 1, 5 > the performance worsens a lot for both S1
and S2 (ASM). All the other weighting combinations lead to better
results for S1 and to comparable results for S2 (ASM). The best per-
formance is achieved by setting all three weights to 1. The so far
best result of 12.1 ASM for S2 and the FULL set can be further im-
proved to 11.9. The positive impact of the adaptation is larger for
S1 compared to S2. S2 already incorporates information about N
while S1 does not. The influence of the adaptation interval can be
seen in Figure 2, using the FULL set and S2. Adapting the weights
every 10 skips gives the lowest average skip rate while adapting too
early leads to small training data for adaptation. The later adapta-
tion is performed, the later useless features are excluded. For many
playlists of genres with small mean skip values, adaptation is not
performed, since there are less than v skips needed. Adapting after
every 10 skips leads to an ASM of 11.4, which is the overall best
reported result.
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Fig. 2. Adaptation of feature combination weights in different inter-
vals, S2, < 1, 1, 1, x >.

5. CONCLUSION AND OUTLOOK

We described our system for playlist generation for music.It uses a
single button for user feedback which is skipping the current played
music. We investigated MFCC and MFLC features to be used as
basic features and found that MFLCs outperform MFCCs (ASM).
Features which are usually computed over the whole spectrum were
extracted from sub-bands and then transformed and reduced in di-
mensionality with an LDA. Using side features in addition to the
basic feature MFLCs improves the performance of the system for
S2, the better of the two strategies. Adaptation of the distance func-
tion can further improve the quality of the playlists. Using random
selection on the used database leads to an ASM of 144.4 which is
reduced to 11.4 for the best confi guration. The task and the way
the evaluation is performed is vulnerable to outliers. We assume
that adding features which describe other musical properties than
the spectral shape will not only improve the overall quality of the
playlists but also allow to increase the gain from adaptation. Further
gain is assumed to be observed when using a variable adaptation in-
terval. Starting with a large v to gain enough training data for adap-
tation, and then perform adaptation more often after more skipped
songs become available. In future we would further like to test the
system with users to investigate the usability.
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CL EL MP RP WO ASM/MSM
noadap 0.9 51.8 11.6 7.0 76.7 29.6/28.2

<0,0,1,5> 0.8 87.5 31.4 14.0 85.1 43.8/34.0
<0,1,0,5> 0.8 36.8 15.5 8.9 50.7 22.5/20.0
<0,1,1,5> 0.6 39.4 16.2 7.6 47.3 22.2/20.2
<1,0,0,5> 0.7 38.6 14.3 8.0 53.2 23.0/20.4
<1,0,1,5> 0.6 48.2 20.4 7.0 57.2 26.7/21.6
<1,1,0,5> 0.7 37.3 15.0 7.8 50.6 22.3/20.2
<1,1,1,5> 0.6 38.6 14.5 7.5 48.1 21.8/20.2

Table 4. Different adaptation weights, S1 (genre means, ASM,
MSM).

weights CL EL MP RP WO ASM/MSM
noadap 0.5 17.2 5.6 5.0 32.4 12.1/10.8

<0,0,1,5> 0.6 64.7 23.7 9.6 56.0 30.9 / 20.8
<0,1,0,5> 0.5 17.5 6.6 7.6 27.1 11.9 / 9.6
<0,1,1,5> 0.5 20.3 10.2 7.1 29.0 13.4 / 10.2
<1,0,0,5> 0.5 19.3 6.6 6.1 28.9 12.3 / 10.8
<1,0,1,5> 0.5 20.3 11.7 7.0 29.7 13.8 / 9.8
<1,1,0,5> 0.5 17.8 7.6 6.9 28.5 12.2 / 10.2
<1,1,1,5> 0.5 19.0 8.0 6.9 24.9 11.9 / 9.4

Table 5. Different adaptation weights, S2 (genre means, ASM,
MSM).
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