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ABSTRACT
This work addresses the problem of locating rhythmic pat-
terns in music recordings. During the feature extraction stage,
a short-term processing technique is applied, in order to de-
tect signi cant changes in the spectral and energy evolution of
the music signal. The detected changes are in turn treated as
onsets of events and a sequence of inter-onset intervals is ex-
tracted. The resulting sequence is long-term segmented and is
fed as input to a Hidden Markov Model (HMM) which mod-
els a prede ned rhythmic pattern. An enhanced Viterbi algo-
rithm is proposed, that extracts a best-state sequence, which
determines the pattern location boundaries. Our method was
tested on a set of music recordings of music meter 2

4
, 3

4
, 7

8
and

9

8
and steady tempo. The proposed method exhibits excellent

precision (100%) over pattern locations and a recall ranging
from ∼ 34% up to ∼ 74% depending on the music genre.

Index Terms— rhythmic patterns, Hidden Markov Mod-
els, Enhanced Viterbi algorithm

1. INTRODUCTION

Automatic location of rhythmic patterns, is a dif cult yet high-
ly desirable task for applications in the context of music in-
formation retrieval. Locating rhythmic patterns is associated
with nding the positions of beats and meter in audio les.
Efforts, so far, have been focused on the beat tracking task
for western music meters, such as 4

4
, some of which are high-

lighted below.
Goto et al. presented two systems, the rst detecting drum

sounds [1] and the second chord changes [2], in order to deter-
mine the temporal positions of quarter and half notes, while
using a multi-agent expert system for the prediction of the
beat. Scheirer [3] detected the changes in the amplitude en-
velopes of six subbands and tracked the beat and beat phase
from the maximum output of 150 comb lters, representing
possible tempo values. Sethares et al. [4], using low level
features, presented two approaches for beat tracking in mu-
sical performances, one based on Bayesian decision frame-
work while the other implemented a gradient strategy. Kla-
puri et al. [5] demonstrated beat and meter tracking using the

combination of the subband decomposition of [2, 3] for onset
extraction and three HMMs for the estimation of tempo and
meter in three metrical levels. Finally, Dixon [6] extracted
the locations of rhythmic patterns, for western type dances,
by providing the location of the rst beat, in an attempt to
characterize music via their rhythmic patterns.
In this work, we use HMMs to locate rhythmic patterns

in music recordings by employing an enhanced Viterbi algo-
rithm. The proposed method operates on the assumption that
the music meter and a rough estimate of the tempo are known.
In our work the tempo estimator, proposed in [7], is used to
provide this information for each recording. It is assumed that
tempo remains approximately constant throughout the record-
ings. To our knowledge, this is the rst time that the problem
of beat and meter tracking is addressed in the context of com-
plex meters without any prior knowledge of any pattern loca-
tion. Our focus is on complex meters, such as 7

8
, 9

8
, which ap-

pear in eastern folk music. Furthermore, we studied patterns
for music meter 2

4
, 3

4
which are also frequently encountered

in traditional dances. In our approach, a rhythmic pattern is
modeled by means of a Hidden Markov Model, where each
event of the pattern corresponds to a HMM state. In order to
locate occurrences of such a pattern in a recording, the HMM
is fed with overlapping segments of the feature sequence that
has been extracted from the audio data and at a next step the
extracted patterns (if any) are connected creating a chain of
rhythmic patterns.
The paper is structured as follows: Section 2 focuses on

feature extraction, Section 3 analyzes the HMM modeling of
a rhythmic pattern and also presents the enhanced Viterbi al-
gorithm. Section 4 evaluates the proposed system, and nally
future research priorities are drawn in Section 5.

2. FEATURE EXTRACTION

A short-term processing technique is rst applied in order to
detect signi cant changes in the audio, marking candidate
beat locations. Each short term frame (� 93 msecs long,
with�81.3msecs overlap between successive frames) is mul-
tiplied by a Hamming window and is given as input to a Mel-
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scale lter bank [7]. The center frequencies of the lters coin-
cide with the frequencies of whole tones on a chromatic scale,
starting from 110Hz and moving up to � 12.KHz, resulting
into 42 lters, which cover approximately seven octaves.
Let melStd(n), be the smoothed and normalized stan-

dard deviation of the lter bank outputs and dEner(n), n =
1, . . . , N , the rst derivative of signal energy for each frame,
where N is the number of short-term frames. A peak pick-
ing algorithm selects those maxima with frame index m for
which stdMel(m) > stdMel(k),∀k ∈ [k1, k2] andm being
the center of the [k1, k2] interval. Let also i be the number
of frame for which dEner(i) > dEner(k),∀k ∈ [k1, k2]
with i being, also, the center of [k1, k2]. Our goal is to se-
lect those frames whose frames indices i, m coincide within
a threshold value. For our experiments this value was chosen
to be equal to 0.1secs. These frames are selected to indicate
onsets and we choose the respective value of m to indicate
the onsets. The value of k2 − k1 depends on the recording
tempo. For the tempo values of the examined corpus, rang-
ing from 89-385 beats per minute, bpm (as shown in Table
2), k2 − k1 was set equal to the time equivalent of tempo

2
for

recordings with tempo ≤ 150bmp and tempo all others with
tempo tempo ≥ 150bpm, respectively.
The physical meaning of these onsets is that they signal

the beginning of an event, i.e., a signi cant change in terms
of spectrum (melStd) and energy (dEner). Each event will,
therefore, have an onset and an associated time duration. Let,
mk,mk+1 be two consecutive selected onsets. Then mk <

mk+1 and mk+1 − mk is the so-called inter-onset-interval
(IOI). The feature sequence R that is given as input to the
HMM, is formed by zeroing the melStd of all frames, except
those that correspond to onsets, i.e.,

R = {Oz0
, a(m1), Oz1

, a(m2), . . . , OzM−1
, a(mM ), OzM

},

where Ozj
stands for zj successive zeros. As a result, a(mj)

is the amplitude of the j-th onset and Ozj
it’s associated dura-

tion.
At a next step, sequence R is long-term segmented by

means of a moving window technique. The length and step
of the moving window depend upon the expected length, PL,
of the rhythmic pattern. PL is computed from the music meter
and tempo of the recording. For example, for a rhythmic pat-
tern of music meter 7

8
and tempo 250bpm the pattern length

PL � 1.7sec. In our experiments the length and step of the
moving window are set equal to 5∗PL

2
and PL

2
, respectively.

Each long-term segment is processed separately by the HMM
that models the pattern.

3. MODELING RHYTHMIC PATTERNS BY MEANS
OF HMMS

Rhythmic structures can be considered to build upon funda-
mental rhythmic patterns. For example, recordings of mu-
sic meter 7

8
with tempo ranging from 200 - 290bpm, as is

Table 1. HMM rhythmic pattern.
2

4
dotted eighth - dotted eighth -eighth

3

4
quarter - eighth - eighth - eighth - eighth

7

8
dotted quarter - quarter - quarter

9

8
quarter - quarter - quarter - dotted quarter

the case with a number of traditional music genres, are per-
ceived as a sequence of rhythmic patterns of [dotted quarter

note - quarter note - quarter note]. This is also consistent
with the performance of the accompaniment instruments and
the singing voice in such recordings. To construct the corre-
sponding HMM, each component of the above rhythmic pat-
tern will be represented by a HMM state, as shown in Figure
1. Each state models by means of a Gaussian pdf with mean
value, μi, the time duration of the respective event (within an
allowable tempo uctuation). That is, for the above example
we have three states each tuned to the respective note dura-
tion.
Other patterns explored, are shown in Table 1 and con-

stitute the most popular patterns in traditional Greek dance
music, which has been studied for our experiments. Let us
now proceed with theMarkov modeling details.

E1

A1,2 A2,3

A3,1

AE1,E2

AE1,1

AE2,1

AE2,E1

State State 2 State 3

HMM rhythmic pattern (meter 7/8)

A3,E2

E2

Fig. 1. 3-state HMM modeling of a 7

8
rhythmic pattern.

3.1. End States and Enhanced Viterbi Algorithm

In Figure 1 except from the three rhythmic pattern states,
two more states are added, namely E1, and E2 (displayed in
black). These states will be referred to as end states and are
allowed to emit all the detected IOIs with a uniform probabil-
ity. The physical meaning of these states is that the HMM can
bounce between them whenever a sequence of IOIs does not
conform with the pattern being modeled. On the other hand,
the states that model the rhythmic pattern are assumed to emit
IOIs following a Gaussian probability.
In HMM terminology [8], let λ = {π,A,B}, be the pa-

rameters of the HMM that models a rhythmic pattern. πi is
the initial state probability, AS×S the state transition matrix,
Bi the Gaussian probability distribution (pdf ) of each pat-
tern state, and S the number of states (including pattern and
end states). Each Gaussian pdf, is associated with a pattern
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component (i.e., dotted quarter), with mean time duration μi

and standard deviation σi,where time is measured in frames.
In our experiments σi was set to ∼ 0.06sec (3 frames) in
order to generate high probabilities when the correct onset
durations are detected. The initial probabilities were set to
π=[1

2

1

2
0 . . . 0], (S-1 zeros), forcing all paths to start from

the rst end state or the rst pattern state. Furthermore, all
self transition probabilities are set to zero, i.e., Ai,i = 0. The
only allowable right to left transitions are those from the sec-
ond end state and the last pattern state to the rst end state
and the rst pattern state, marked with dashed arrows in Fig-
ure 1. This allows for tracking repetition in terms of rhythmic
patterns.
To nd a single best state sequenceQ = {q1, q2, . . . , qT},

where T is the time instance of the last observation, the Viterbi
algorithm is used. First, let us de ne the forward variable [8]:

at(j) = P (q1 q2 . . . qt, state j ends at t |λ), j = 1, . . . ,S
(1)

where at(j) stands for the probability of the model nding
itself in the j-th state after the rst t observations have been
emitted. It can be shown that ([8, 9]):

at(j) = max
1≤t≤T,1≤i≤S,i�=j

[δt(i, j)] (2)

δt(i, j) = at−1(i)Ai,jBj(t) (3)

where t is the time index.
From Equation (3), it can be seen that the standard Viterbi

algorithm employs a Type B cost function for the generation
of the trellis diagram [10]. A Type B cost function takes into
consideration both the transition costs between nodes [i, j]
(Ai,j Bj(t)), as well as the accumulated node costs (at−1(i)).
In our approach, a Type T cost function was used instead,
that only accounts for the transition cost between nodes. It is
worth mentioning that a Type T cost retains theMarkovian na-
ture of the trellis diagram [10]. InMarkovmodel terminology
Equation (3) reduces to:

δt(i, j) = Ai,jBj(t) (4)

By eliminating the forward probability, this cost function
takes into account only the “local” activity of the most recent
transition. If the HMM enters several times the end states be-
fore entering the pattern states, this will not affect local high
probability transitions between pattern states which indicate
that the pattern has been found.
To nd the best state sequence, Q = {q1, q2, . . . qT } for

each long-term segment the arguments that maximize Eq. (2)
are rst stored in a two dimensional array ψ, as ψ(j, t)

ψ(j, t) = argmax [δt(i, j)], 1 ≤ i ≤ S, i �= j (5)

At a next step, a backtracking procedure is applied on every
node that corresponds to the last state of the rhythmic pattern,

irrespective of time instance. This is expected to yield a num-
ber of paths. In order to select the best one (with the highest
probability), the path probabilities have to be computed. To
this end, if Q = {q1, q2, . . . qT } is an extracted path, the as-
sociated probability is calculated from the equation:

pmodel =
∏

∀q∈Q

at(q), and q not an end state. (6)

As shown in the above Equation (6), the end states do
not participate in the calculation of the pattern recognition
probability since they do not belong in the rhythmic patterns
modeled by the HMMs.
Due to the nature of polyphonic music, it is obvious that

the onsets returned during the feature extraction process will
outnumber the onsets corresponding to the correct beat loca-
tions. To address the above problem, an enhancement of the
Viterbi algorithm was employed, which is a variation of that
introduced in [11]. Let us consider the onset sequence R for
an audio region, i.e.:

R = {. . . , a(m − 3), Ozm−3
, a(m − 2), Ozm−2

,

a(m − 1), Ozm−1, a(m), Ozm
, a(m + 1), Ozm+1

, . . .}

Let a(m) and a(m − 3) be two correct onsets with two false
ones, [a(m − 2), a(m − 1)] in between. Their correspond-
ing durations of [a(m − 2), a(m − 1)] are [Ozm−2

, Ozm−1
].

Although a(m − 3) is a correct onset, it’s corresponding du-
ration Ozm−3

is erroneous, due to the presence of the events
a(m−2), a(m−1). Taking into account the zero components,
the correct duration can be derived as

∑3

i=1
Ozm−i

. In this
way, we offer to the HMM the possibility to eliminate false
onsets and keep the correct ones, while searching for the op-
timal path and if a lower cost (higher probability) is achieved
by eliminating events, the Viterbi is given the means to do it.
In other words, the cost now becomes “context” dependent.
This context dependency of the Viterbi algorithm leads to the
modi cation of Equation (4) as:

δ̂t(i, n, j) = Ai,jB̂j , (7)

where: B̂j = Bj(
∑t

d=t−n+1
Ozd

), where n is the index of
the zero component being added and D the maximum num-
ber of observations allowed to be summed. The maximum
number of observation symbols over which a state is allowed
to sum, depends upon the tolerance of each state mean dura-
tion variation Δμi. This is expressed as: ∀i ∈ pattern states,∑D

d=1
Ozd

≤ Δμi. In this work, a constant state duration
variation Δμi � 20%μi was allowed, based on extensive ex-
perimentation. Equation (2) is now transformed to:

ât(j) = max
1≤t≤T,1≤n≤D,1≤i≤S,i�=j

[
δ̂t(i, n, j)

]
(8)

Unlike the pattern states, the end states are not allowed to sum
consecutive onsets. This is justi ed by the fact that end states
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are not actually a part of the examined rhythmic pattern, but
rather serve as “collectors” for erroneous and “off-beat” on-
sets. After the whole feature sequence has passed through the
HMM the resulting pattern’s locations are examined. Among
the correct locations returned by the algorithm, false pattern
locations may appear. An iterative procedure connecting pat-
terns with consecutive locations or locations that differ a max-
imum distance of 10 pattern lengths, PL, within a time thresh-
old of 0.1sec takes place. In this manner, chains of rhythmic
patterns are formed. This is employed under the assump-
tion that the same rhythmic pattern is encountered through-
out a single recording, as it is the case with Greek Traditional
dances. The chain holding the maximum number of patterns
is returned as the answer to the rhythmic pattern search.

4. EXPERIMENTS

Our music dataset consists of 69 audio tracks containing 4447
rhythmic patterns, as shown in Table 2. Table 2 suggests that
the algorithm has a 100% precision in the location of the pat-
terns returned, meaning that the locations of patterns always
coincide with the perceived ones. In other words, the algo-
rithm guarantees that all identi ed pattern locations are cor-
rect. The algorithm’s recall is also satisfactory in music me-
ters 2

4
, 7

8
, 9

8
. By recall we mean the percentage of the cor-

rectly identi ed patterns in respect to their total number. The
recall in 3

4
is lower due to the fact that in this speci c dance

style the leading instrument and/or singing voice does not al-
ways follow the accompaniment instruments resulting to only
a few true onsets. In general, the algorithm’s performance
is affected when large tempo variations occur, i.e. true IOIs
fall outside the range speci ed by Δμi. In addition, the re-
call of the proposed method decreases when correctly located
patterns form isolated chains that are distant with each other.
It is worth mentioning that, if a HMM that models a spe-

ci c pattern is fed with the feature sequence R of a music
recording that does not follow the speci c pattern, then the
HMM will not form any chains of patterns at all. Therefore
there exists zero confusion among the patterns modeled. As a
result, the existence of a rhythmic pattern chain can be used as
the means to associate audio recording and rhythmic patterns
occurring in speci c dances.
Audio examples demonstrating the algorithm’s performance

can be found in:
www.di.uoa.gr/∼jantonop/rhythmexamples.htm

5. CONCLUSIONS

In this work, we have developed an algorithm that can track
rhythmic patterns within an audio le under the assumption
that these exist. In our future research priorities, local beat
estimation will be attempted to account for varying tempo
recordings. In addition, an effort for a more ef cient rhythmic
pattern connection algorithm will be looked into.

Table 2. Pattern location results per rhythmic pattern.
music meter 2

4

3

4

7

8

9

8

# patterns 1352 1496 1029 570
# located 1069 479 776 403
# not located 283 1017 253 167

bpm 89 -95 93-105 240-270 270-385
precision (%) 100 100 100 100
recall (%) ∼ 76 ∼ 34 ∼ 72 ∼ 70.7

6. REFERENCES

[1] Masataka Goto and Yoichi Muraoka, ,” in Music Un-
derstanding At The Beat Level — Real-time Beat Track-
ing For Audio Signals. IJCAI-95 Workshop on Compu-
tational Auditory Scene Analysis, 1995, pp. 68–75.

[2] Masataka Goto and Yoichi Muraoka, “Real - time beat
tracking for drumless audio signals: Chord change de-
tection for musical decisions,” Speech Communication,
vol. 27, pp. 291–294, April 1999.

[3] E. Scheirer, “Tempo and beat analysis of acoustic music
signal,” Journal of Acoustic Society, vol. 103(1), pp.
588–601, October 1993.

[4] William A. Sethares, Robin D. Morris, and James C.
Sethares, “Beat tracking of musical performances using
low-level audio features,” IEEE Transactions on Speech,
Audio and Processing, vol. 13(1), pp. 275–285, 2005.

[5] Anssi Klapuri, Antti J. Eronen, and Jaakko T. Astola,
“Automatic estimation of the meter of acoustic musical
signals.,” IEEE Transactions on Speech, Audio and Lan-
guage Processing, vol. 14(1), 2006.

[6] Simon Dixon, Fabien Gouyon, and Gerhard Widmer, ,”
in Towards characterization of music via rhythmic pat-
terns. ISMIR Proceedings, 2004, pp. 1281–1284.

[7] Aggelos Pikrakis, Iasonas Antonopoulos, and Sergios
Theodoridis, ,” in Music Meter and Tempo Tracking
from Raw Polyphonic Audio. ISMIR Proceedings, 2004.

[8] L.R. Rabiner, “A tutorial on hidden markov models,”
Proceedings of the IEEE, vol. 77(2), pp. 257–286, 1989.

[9] S. Theodoridis and K. Koutroumbas, “Pattern recogni-
tion,” Academic Press, 3d Edition, 2006.

[10] J.G. Proakis J.R. Deller and J.H.L. Hansen, “Discrete-
time processing of speech signals,” Macmillan, 2nd Edi-
tion, 1999.

[11] Aggelos Pikrakis, Sergios Theodoridis, and Dimitris
Kamarotos, ,” in Classi cation of Musical Patterns
Using Variable Duration Hidden Markov Models. Proc
EUSIPCO, 2004, pp. 1281–1284.

I  224


