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ABSTRACT 
 
Fast and robust recognition of a song's meter, and quarter note 
tempo is crucial in many Music Information Retrieval tasks 
dealing especially with large databases or real-time musical stream 
processing. We therefore introduce a novel approach that is 
capable of extracting musical meter features and tempo in beats 
per minute. The method is extendable in order to return the 
locations of beat onsets suitable for example for beat 
synchronization or musical audio segmentation. We use a 
simplified psychoacoustic model to split the input into audible 
frequency bands and two phase comb filtering on those bands to 
find the quarter note tempo and metrical structure. Based on these 
features we discriminate the nine classic ballroom dance styles and 
duple or triple meter by Support-Vector-Machines as exemplary 
application. Test-runs are carried out on a public Ballroom Dance 
Music database containing 1.8k titles and the public MTV-Europe 
Most Wanted 1981-2000 to demonstrate the high effectiveness for 
popular music with respect to meter, tempo and ballroom dance 
style recognition. 

Index Terms— Musical Tempo, Musical Meter, Genre 
Recognition, Ballroom Dance Style Recognition, BPM Detection 

1. INTRODUCTION 

Almost all processing of musical signals at a higher level requires 
information about the song's tempo and meter. Finding a song’s 
progression is drastically simplified when one knows at which 
instants chord changes are to be expected. Several musical tracks 
of different tempos can be synchronized and blended at one tempo 
level. Especially for classifying ballroom dance music, which is 
the main target within this work, tempo and meter features play the 
key role.  
There are numerous works that aim at finding the tempo of the 
beat which corresponds to the quarter note level [1-6]. However, 
only few [5] deal with the metrical structure above this level. The 
approach introduced herein aims at a combined fast and robust 
extraction of tempo and meter features and subsequent 
classification of ballroom dance styles. Likewise, a large music 
database can be automatically annotated by tempo and dance style 
for Music Information Retrieval purposes. 

2. GENERAL APPROACH 

Meter detection requires tempo independent information about the 
song’s rhythmic structure [7]. For this it is necessary to find the 
song’s quarter note tempo reliably. Other approaches to meter 
detection [5] manually adjust the automatically extracted tempos. 
Our approach solemnly relies on finding multiple tempos in a song 
and comparing how well they resonate with this song. Thus, tempo 
information is an essential product of our meter recognition 
approach. 
There are mainly three different approaches for tempo detection: 
using correlation methods [2,3], detecting note onsets and then 
finding the most common inter-onset interval (IOI) [1,5] and a 
multiple resonator approach with comb filters [4]. Our tempo 
extraction is based on [4], with a few improvements and 
performance enhancements, as we require a larger tempo search 
range, which implies computing more comb filters. As it is very 
hard, even for a human listener, to determine if the quarter notes of 
a song (beats) are better grouped by 2, 4 or 8, we simplify the 
meter extraction problem to a simple duple or triple decision [5]. 
We believe this is sufficient even for further processing on higher 
levels that relies on our metrical data. The algorithms mentioned in 
[5] and [6] try to determine the metrical grouping by explicitly 
identifying downbeats. A downbeat thereby is a stronger accented 
beat, which usually indicates the first beat in a meter. However, 
the task of reliably finding a downbeat is challenging, even for the 
non-experienced human listener. Moreover, downbeats may not 
occur regularly at the beginning of a meter.  
Our method therefore focuses on reliably classifying the meter into 
the two classes, duple and triple, without any knowledge about 
note onsets, beat positions or downbeat locations. It relies merely 
on finding a base tempo called Tatum [6], and analyzing how well 
integer multiples of this Tatum resonate with a large part of the 
song. The Tatum thereby corresponds to a tempo of at least the 
quarter note tempo or higher. In a later stage of the algorithm, after 
the quarter note tempo is known, it is possible to find the correct 
phase of the quarter notes, by looking at the filter output [4] and 
tracking the phase over the whole song to sort out errors. 

3. FEATURE EXTRACTION 

In the process of extracting the two main features, tempo and 
meter, several other features are extracted, that will be used in the 
later classification step.  
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3.1. Preprocessing 

The input data is down sampled to 11.025 kHz and converted into 
monophonic by stereo-channel addition in order to reduce 
computation time. Audio is split into frames of 256 samples with 
an overlap of approximately 0.57, resulting in a final envelope 
frame rate of 100 fps. A Hamming window is applied to each 
frame before computing the FFT. The amplitude of each of the 128 
FFT frequency bands is weighted according to our hearing, which 
is most sensitive to frequencies around 3.4 kHz. By using 12 
overlapping triangular filters, equidistant on the Mel-Frequency 
scale, the 128 bands are reduced to 12 nonlinear bands. According 
to [4] the envelope information of such a small set of bands, 
covering the whole audible frequency range, still contains the 
complete rhythmic structure of the musical piece. 
The band envelopes are then converted to dB and low pass filtered 
by convolving with a half wave raised cosine filter of length 15. 
This preserves fast attacks, but filters noise and high frequencies, 
most as in the human ear. Of the filtered band envel.opes a 
weighted differential drel is taken. This differential is computed in 
the following way for a sample oi at position i: A moving average 
is calculated over one window of 10 samples to the left of sample 
oi (left mean i,l) and a second window of 20 samples to the right 
of sample oi (right mean i,r). The differential then is: 

, ,rel i i l i r
d i o o o  1) 

This method is derived from the fact, that a human listener 
perceives note onsets louder if they occur after a longer time of 
lower sound level. The weighting with the right mean i,r
incorporates the fact that note duration and total note energy play 
an important role in determining the phenomenal note accent [6].  

 3.2. Tatum features 

The Tatum grid, according to [6], is the lowest metrical level of a 
song. It represents the highest tempo present in the song and 
therefore the lowest inter-onset-interval. For finding the Tatum 
tempo we use a comb filter bank, similar to [4], consisting of 57 
filters, with gain 0.8 and delays ranging from =18 to =74
envelope samples. The differential drel of each Mel-frequency-
band envelope is processed by the filter bank, and the total energy 
over all bands of the output of each filter is computed. This value 
for each filter is stored in what we call the Tatum tempo vector T,
as depicted in Fig. 1. From this vector T five additional features are 
extracted considering the quality of the peaks in the vector: T-max
and T-mean are the maximum and mean values of the Tatum 
vector. T-ratio is computed by dividing the highest value by the 
lowest. T-slope is computed by dividing the first value by the last 
value. T-peakdist is computed as mean of the maximum and 
minimum value normalized by the global mean. These features 
correspond to how clearly visible the Tatum candidate peaks are 
and how flat the Tatum vector T is (see Fig. 1). 
Since our comb filters tend to higher resonances at higher tempos 
on songs with little rhythmic content (Fig 1, b), the vector is 
adjusted by considering the difference between the average of the 
first 6 values and the average of the last 6 values. From the 
resulting vector the two most dominant peaks are picked as 

follows: Firstly, all local minima and maxima are found, then for 
each maximum its apparent height is computed by taking the 
average of the maximum minus its left and right minimum. The 
indices of the two maxima with the greatest apparent height are 
considered possible Tatum (abbreviated T in the ongoing) 
candidates (T1 and T2). To decide which of the two candidates fits 
best, we comb filter the band envelopes at tempo multiples of 3 
and 4 times of each Tatum candidate and then decide for which 
Tatum candidate the total filter output summed over both multiples 
is maximal. This candidate is called the final Tatum Tf in the 
following. 
 
a) 

 
b) 

 
c) 

Fig. 1. – Plots of 57 dimensional Tatum tempo vectors T for the 
songs a) Robbie Williams – Rock DJ, b) Celine Dion – My Heart 
will go on, c) OMD – Maid of Orleans. Axes are labeled with the 
delay in envelope samples of the comb filter corresponding to a 
Tatum vector element. 

 3.3. Meter and Tempo Features 

The meter vector m is computed by setting up narrow comb filter 
banks centered on integer multiple tempos of the final Tatum Tf.
The width of the filter bank, i.e. the number of filters, is identical 
to two times the factor the Tatum is multiplied by plus one, in 
order to account for roundoff inaccuracies of the Tatum. For each 
filter bank the filter with the highest energy output is selected as 
the tempo and the total energy of this filter over all bands is the 
tempo score value in the meter vector at the position of the 
multiplication factor. The tempo score value indicates how well 
this certain tempo resonates with the song. It is sufficient to use 
Tatum multiples from 1 to 19, since all important multiples for 
meter classification are included in this range. The advantage of 
this two-step method over setting up comb filters for the total 
tempo search range is a reduction to a third of necessary comb 
filters to speed-up computation. With our meter vector, as depicted 
in Fig. 2., it is fairly easy to reliably determine the metrical 
structure. Two sums s2 and s3 are calculated: 

1

2 3
(4) (8) (16)s m m m  (2) 

1

3 4
(3) (6) (9) (18)s m m m m  (3) 
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The greater of the two sums determines the base meter. If s3 is 
greater, then the base meter is triple (3/4 or 6/8 time signature), 
otherwise it is duple (4/4 or 2/4 time signature).  
 
a) 

 
b) 

 
c) 

Fig. 2. - Meter vectors m for the songs referenced in Fig. 1. Clearly 
visible is the triple meter for the song Maid of Orleans (bottom). 

For the quarter note tempo we define bounds within which the 
tempo is expected. For duple base meter the range reaches from 60 
BPM to 143 BPM and from 75 BPM to 240 BPM for triple base 
meter. As the quarter note tempo we choose the highest scored 
tempo in the meter vector within these ranges. It is likely that at 
this point we make so called octave errors. These will not be of 
any further concern for us since they are not relevant for the meter 
classification and also a human listener sometimes cannot decide 
for sure if he taps along at double or half the actual tempo. 
Phase information for the quarter note tempo can be derived by 
analyzing peaks in the output of this tempo’s comb filter. 
The base meter in most cases refers to the grouping between 
Tatum and the next higher metrical level. However, if an incorrect 
Tatum is found, e.g. one third of the true Tatum, the quarter note 
tempo may still be detected correctly, but the base meter will 
likely be wrong, e.g. triple instead of duple. To still be able to find 
the correct meter in such cases, we compare if three times the 
quarter note tempo has a higher value in the meter vector than two 
and four times the quarter note tempo, and then decide on triple, or 
else on duple final meter. 

4. DANCE AND POPULAR MUSIC DATABASES 

As a first database we choose the top 10 songs per year of the 
MTV Euro Most Wanted from 1981 to 2000. Likewise 200 songs 
in total are contained in this set abbreviated MTV in the ongoing. 
This musical selection is a good example of typical popular music 
from diverse genres as Rock, Hip Hop, Electronic Dance Music, 

Ballads or Pop. Yet, only 4 pieces with ¾ meter are contained 
while the rest is in common time. 
We therefore chose a secondary set of 1,855 pieces of typical 
ballroom and Latin dance music to be found at [8], covering the 
Standard Dances Waltz, Viennese Waltz, Tango, Quick Step, and 
Foxtrot, and the Latin Dances Rumba, Cha Cha, Samba and Jive. 
30 seconds of each song are available, which we converted to 44.1 
kHz PCM so that the same preprocessing is used for both sets. The 
distribution among dance styles is depicted in tab. 1. This set is 
abbreviated BRD in the ongoing. 

Tab. 1: Distribution of dance styles within BRD database 

Waltz Viennese Waltz Tango Quick Step 
293 136 185 242 

Foxtrot Rumba Samba Cha Cha Jive 
245 217 188 211 138 

The ground truth of tempo, ballroom dance style and meter for the 
MTV data-set was manually annotated by two professional 
ballroom dance DJs. For the BRD data-set the ground truth of 
tempo, dance style and meter is known from [8]. 

5. CLASSIFICATION 

With the described features we now aim at classifying meter and 
ballroom dance style. As classifier we employ Support Vector 
Machines (SVM) with a polynomial Kernel function basing on our 
experience in Musical Genre Discrimination [9]. We firstly 
analyze the BRD dataset by performing a closed-loop Hill-
climbing feature selection employing the target classifier’s error 
rate as optimization criterion, namely Sequential Forward Floating 
Search (SVM-SFFS) [9]. This reveals the following features to 
yield the best results for dance style classification (FS-D in the 
ongoing): quarter note tempo, T1 and T2, base meter, Tatum tempo 
vector T, T-ratio, T-slope, T-peakdist, and meter vector m elements 
2, 3, 4, 8, 10, 12, 14-18. To evaluate the effectiveness of our 
automatically extracted features combined with the ground truth of 
tempo and meter, a second feature set (FS-Dgt) is introduced with 
the following features: ground truth tempo and meter, Tatum 
tempo vector T, T-ratio, T-slope, T-peakdist, and meter vector m
elements 2, 3, 4, 8, 10, 12, 14-18. Features relevant for meter 
classification (FS-M in the ongoing) are the quarter note tempo, T1
and T2, final meter, base meter, Tatum tempo vector T, T-ratio, T-
slope, T-peakdist, and meter vector m elements 2-19. The data is 
standardized before training the classifier. 

6. RESULTS AND DISCUSSION 

Test runs have been carried out on the two introduced sets MTV 
and BRD. The accuracy of the features tempo, base meter and final 
meter compared to the ground truth of tempo and meter is 
evaluated. Hereby the tolerance for tempo detection is 3.5% 
relative BPM deviation. In a 10-fold stratified cross validation 
(SCV) we evaluate the effectiveness for dance style and meter 
classification by SVM. The BRD data-set is further used as 
training set for dance style classification, to test on the MTV set. 
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Accuracy [%] Jive Samba Rumba Cha  Fox QuickS Waltz VWaltz Tango MEAN 
Tempo (±3.5%) 96.4 72.9 78.3 92.9 86.5 91.7 47.0 68.9 93.5 79.5
Final meter 99.3 75.0 96.3 98.6 96.3 94.2 38.9 78.5 97.8 84.1
Tempo + final meter 96.4 72.9 78.3 92.9 86.5 90.1 29.0 63.7 93.5 76.1
Base meter 92.3 65.4 86.2 96.2 78.8 83.9 79.9 86.7 82.7 83.1
BDS Recall 85.5 78.7 65.0 84.4 88.6 84.3 93.2 85.3 81.6 83.3
BDS Precision 91.5 85.1 71.6 89.0 87.5 82.6 79.4 89.2 81.2 83.4
BDS F1-Measure 88.4 81.8 68.1 86.6 88.0 83.4 85.7 87.2 81.4 83.2

Tab. 2. - Accuracy for tempo and meter features. Recall, Precision and F1-Measure of ballroom dance style (BDS) classification. Set BRD. 

Average computation time for the feature extraction of 120s 
excerpts from the MTV dataset is 11.6s and 2.8s for the 30s 
excerpts from the BRD set, roughly corresponding to a rtf of 0.1 
on a P4-Mobile with 1.4 GHz. 
Using 120s excerpts from the MTV data-set, the quarter note 
tempo is identified correctly on 178 of the songs resembling 89% 
recognition accuracy. On 177 of these 178 songs, the meter is 
identified correctly resulting in 88.5% songs with both – meter and 
tempo – assigned correctly within the named tolerance. Overall, 
meter alone was correctly recognized with 95.0% accuracy on the 
MTV database. No false assignments were observed for the 4 
pieces of ¾ meter. Using only 30s excerpts, a loss in accuracy was 
observed: On only 72% of the songs tempo and meter was 
identified correctly. This demonstrates that for reliable large 
database applications larger portions of a song are beneficial. 
The excerpts from the BRD database available to us are only 30s 
long, so no test runs with longer portions could be run, for which 
we would expect the results to further improve. Detailed results for 
the BRD database are found in tab. 2. Meter is thereby determined 
in a rule-based manner as described in sec. 3.3. Results for data-
driven meter classification with the feature set FS-M and SVM are 
depicted in tab. 3. 

Accuracy Triple Meter Recall Duple Meter Recall 
95.0% 90.7% 96.3% 

Tab. 3. - Meter classification by SVM, 10-fold SCV. Set BRD. 

83.7% average recall rate is achieved when using only the ground 
truth of tempo and meter from [8] for classifying the nine dance 
styles. This shows that dance style recognition is not solemnly a 
problem of tempo and meter but nevertheless highly dependent on 
those features. 
Using our feature set FS-D, consisting only of our automatically 
extracted features, we achieve 83.3% correctly classified instances, 
nearly the same result as with the ground truth of tempo and meter 
mentioned above. For this feature set, results are shown in tab. 2. 
Using the feature set FS-Dgt, results improve compared to using 
only the ground truth of tempo and meter: 93.1% of all instances 
are classified correctly. This demonstrates that our features provide 
a more advanced rhythmic structure of the song compared to the 
sheer ground truth of tempo and meter. 
Finally, we test our approach on typically aired pop-music in a 
cross-validation by training with the BRD-set and testing with the 
set MTV to test the applicability in a challenging real-world 
scenario. Thereby 64.9% correctly assigned dance styles are 

observed. However, this number can be greatly increased, as often 
recognized dance styles fit as well, e.g. Foxtrot instead of 
Quickstep. 

7. CONCLUSION AND OUTLOOK 

Within this paper we effectively demonstrated recognition of 
ballroom dance style, tempo, and meter on two musical databases. 
Especially on typical dance-music high accuracies in this respect 
can be reported. Novel data-driven meter recognition thereby 
outperformed rule-based proceeding. In future work we aim at 
testing on further styles as Classical Music, Jazz, and world music 
as Oriental or African folklore to widen the spectrum of meters.  
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