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ABSTRACT
Content-based audio classi cation techniques have focused
on classifying events that are both semantically and percep-
tually distinct (such as speech, music, environmental sounds
etc.). However, it is both useful and challenging to develop
systems that can also discern sources that are semantically
and perceptually close. In this paper we present results of
our experiments on discriminating two types of noise sources.
Particularly, we focus on machine-generated versus natural
noise sources. A bio-inspired tensor representation of audio
that models the processing at the primary auditory cortex is
used for feature extraction. To handle large tensor feature sets,
we use a generalized discriminant analysis method to reduce
the dimension. We also present a novel technique of parti-
tioning data into smaller subsets and combining the results
of individual analysis before training pattern classi ers. The
results of the classi cation experiments indicate that cortical
representation performs 25% better than the common percep-
tual feature set used in audio classi cation systems (MFCCs).

Index Terms— Noise classi cation, audio classi cation,
discriminant analysis for tensor representation, cortical repre-
sentation, auditory scene analysis.

1. INTRODUCTION

Content-based audio systems rely on clustering, segmentation
and classi cation of distinct acoustic source types through
their within-class signal similarities. These systems rely on
direct mapping between signal level feature vectors and their
classes to achieve the end result. They group the vast possi-
bilities of general audio classes into a handful of application
speci c classes such as speech, environmental sounds, mu-
sic etc [1]. To generalize, it will be necessary to explicitly
increase the number of recognizable groups resulting in in-
creased complexity of the system (for example, more heuristic
rules in [2] would be required). In [3] the authors developed
a generalizable, mid-level representation scheme, where each
instance (of frame based analysis) of an audio signal is classi-
ed into perceptual speech-like, harmonic and noise-like cat-

egories. This representation was successfully used to segment
vocal sections in popular songs using a maximum a posteriori
scheme. To tackle more complex scenes, futher categoriza-
tion of sounds would be necessary.

In this paper, we build upon ideas of attribute based au-

dio representation presented in [3]. Particularly, we aim at
connecting signal representations to audio attributes, and fo-
cus on further analyzing the noise-like class. We present a
classi cation system to discern between two noise sources:
machine generated and other natural noise sources. Machine-
generated noise are audio from sources such as computer print-
ers, telex machines, vehicle engines, air plane propellers etc.
Examples of other noises are sounds of wind, waves on a
seashore, rainfall, leaves rustling. etc. The discrimination
of the two noise categories is challenging because they are
both semantically and acoustically similar and they are usu-
ally categorized without any distinction as non-speech or en-
vironmental sounds in systems such as [1, 2]. Other noise
classi cation systems follow the content-based approach of
trying to explicitly classify individual noise classes such as
car, plane, train etc., using elaborate Hidden Markov Models
( [4] lists a comprehensive list of such systems). As men-
tioned earlier, for a generalizable mid-level representation, it
is desirable to classify noises into categories based on signal
attributes (such as suggested here) rather than classes based
on canonical names. Classifying noise categories has appli-
cations in context recognition [4], scene change detection and
indexing [5], context-aware listening for robots [6] and also
in background/foreground audio tracking [7].

The contributions of this work are as follows. First, as
features for the noise classi cation task, we use a bio-inspired
approach involving a model of processing at the primary au-
ditory cortex. This has been applied to the speech non-speech
discrimination (SNS) problem successfully [8]. As indicated
by our experimental results for noise classi cation, the corti-
cal representation (CR) exceeds the performance of the com-
monly used Mel-frequency cepstral co-ef cients (MFCCs).
Since CR is a multi-dimensional tensor, training pattern clas-
si ers using this data becomes prohibitive due to large vector
dimensions (∼103). For dimension reduction, we use a gen-
eralization of the Fisher discriminant analysis (FDA). How-
ever, this also is not feasible on large training data for pattern
classi ers. This issue is exacerbated by the large dimension
of the data. To address this, we propose a new technique of
data partitioning, and combining the results of analysis on the
individual subsets. We show that discriminant analysis of a
large data set can be made practical by breaking the prob-
lem into smaller sets and using the information from each of
this subset. In the next section, details of this representation
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Fig. 1. Summary of processing from input sound to the multi-dimensional tensor representation of cortical processing [9, 10, 8].

followed by the proposed dimension reduction method is pre-
sented. Finally, results of pattern classi cation algorithms are
presented. We also compare performance of the CR with the
performance of the MFCCs.

2. AUDITORY CORTICAL REPRESENTATION (CR)

While features such as the popular MFCCs are based on the
processing at the early auditory system, the CR is based on
processing of sound at the central auditory system [10]. This
is modelled as a re-analysis of the input spectra from the early
auditory processing stage along the logarithmic frequency axis,
a scale axis (local frequency bandwidth) and a phase axis
which is a measure of the local symmetry of the spectrum.
Since each time-frequency slice of an input audio signal is
measured with respect to these three axes, the analysis results
in a tensor (n-mode) representation.

Figure 1 illustrates the processing stages which nally re-
sult in a tensor representation. The output of the early au-
ditory system is a time-frequency representation of the input
signal. Here the input sound signal is ltered by the basillar
membrane at different centre frequencies along the tonotopic
frequency axis, followed by an differentiator stage, a non-
linearity , low-pass ltering and nally, a lateral inhibitory
network [9]. This is the input to the central auditory system,
which is analogous to the early auditory system, except all the
transformations are along the tonotopic frequency axis. The
processing is modelled as a double af ne wavelet transform of
the frequency axis at different scales and phase. The mother
function wavelet is a negative second derivative of the normal
Gaussian function.

The result of this analysis is a 3-mode tensorA(f : fc, φ, λ)
∈ RD1×D2×D3 . Here, f is the tonotopic frequency at differ-
ent centre frequencies fc, φ is the symmetry (or phase) and λ
is the scale factor or the dilation factor of the wavelet func-
tion. In our experiments, the analysis was performed using
64 bank lters (D1 = 64) at 12 phase (or symmetry) values
(D2 = 12), 5 scale values (D3 = 5). Therefore A(·, ·, ·) is a
64× 12× 5 tensor.

3. DIMENSION REDUCTION

The classi cation experiments presented in this paper follow
a data-driven approach. A total of 1.38 hours of data (from
217 clips) was collected from the BBC sound effects library
(http://www.soundideas.com). A preprocessing stage
rst converted all the 2-channel 44.1 kHz uncompressed au-

dio les into 1-channel 16kHz channels. Then, using an audio
editor (http://audacity.sourceforge.net/) each
clip was manually segmented to remove silence sections, ex-

traneous impulsive sounds and other non-noise segments. In
the process, to facilitate data analysis, the data was also grouped
into machine-noise and other-noise. For analysis, audio frames
of 40 millisecond duration, were extracted every 10 millisec-
onds after it was multiplied with a Hamming window. After
the processing stages in the early and the central auditory sys-
tem, a tensor of dimension 64 × 12 × 5 is obtained for each
frame. Basically, as a vectorized 1-mode representation, a
vector of length 64 × 12 × 5 = 3840 was extracted for each
frame (effectively 5×105 vectors). For comparison of perfor-
mance, MFCCs (39 dimensions: 13 order +Δ + ΔΔ ) were
also extracted.

Certainly, due to the multi-scale analysis of the spectral
pro le, the extracted data contain large amounts of redun-
dancy. Also, it is not feasible to train pattern classi ers on
this raw, large dimensional data set. To make it practical,
the dimension of the data needs to be reduced before training
the classi er. In [8] the authors reduce the dimension using
a generalization of the principal component analysis (PCA)
for this 3-mode tensor, and successfully apply it to robust
speech/non-speech discrimination. Although PCA is a pow-
erful dimension reduction technique, it focuses on nding the
best representation of the data with fewer principal compo-
nents. For discriminatory pattern classi cation, however, dis-
criminant analysis is more appropriate.

For the work presented here, a generalization of the matrix
discriminant analysis for the tensor case was implemented.
This was originally proposed in [11] and successfully used
for face recognition tasks. Although the discriminant analysis
of tensor representation (DATER) algorithm is a suboptimal
solution and works iteratively and by unfolding the tensor in
each dimension, it is still not directly practical for the data
set extracted here. This is made feasible here by introducing
a further sub-optimality by partitioning the data into smaller
sets and performing localized discriminant analysis. Since,
the partitioning is not restricted to a given discriminant analy-
sis method, we also apply it to perform FDA. Our experimen-
tal results indicate that splitting the data does not deteriorate
performance, and as shown for the MFCC case, it improves
the classi cation result. Next the DATER algorithm is dis-
cussed, followed by the proposed data partitioning modi ca-
tion.

3.1. DATER Algorithm
Like FDA, the DATER algorithm seeks to nd matrices U=
{U1∈R

D1×m1 , U2∈R
D2×m2 , . . ., UN∈R

DN×mN}where,mk <
Dk ∀ k such that, (for data set tensorX ∈ RD1×D2...×DN×NS ,
NS is the total number of sample tensors),
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Fig. 2. Illustration of data partitioning. Data points belong to
2 classes (hollow and solid). The whole data is partitioned
into 3 subsets (circles, squares and triangles). The whole
data mapped onto each projection (resulting from discrimi-
nant analysis of each subset) are augmented column-wise to
form the resulting data matrix Y

(Uk|
k=N
k=1 )=argmax

Uk|k=Nk=1

∑
cnc‖X̄c×1U1. . .×NUN −X̄×1U1. . .×NUN‖

∑
i‖Xi×1U1. . .×NUN −X̄ci

×1U1. . .×NUN‖

Here X̄c is the mean of tensors belonging to class c . X̄ is the
overall mean. nc is the number of samples in its respective
class. Xi is the ith sample tensor of class ci. ×kUk repre-
sents the unfolding of a tensor along the kth dimension (into
a matrix) and multiplication with Uk [12]. This is equivalent
to maximizing the between class scatter and minimizing the
within class scatter in FDA.

The algorithm ndsU iteratively by re-projecting the ten-
sor X along Uk ∀ k at the end of each iteration. Similar
to FDA, a generalized eigenvector problem is solved, to de-
termine a mapping that maximizes the inter-class scatter and
minimizes the within-class scatter (using the unfolded tensor).
When the stopping criterion is met, the algorithm outputs the
matricesU={U1∈R

D1×m1 , U2∈R
D2×m2 , . . ., UN∈R

DN×mN} .
After projectingX along the matricesU, we obtain a smaller
dimension tensorX′ ∈ Rm1×m2...×mN×NS .

3.2. Partitioning data
As it will become clearer later, since the DATER algorithm
involves unfolding of the tensors along each dimension, it is
impractical to use it for large training sets. However, by par-
titioning the data into smaller sets, it is possible to use the
algorithm for each subset. This is the partitioning modi ca-
tion proposed in this work. This method is explained below:

1. Randomly partition the whole data X into P sets Lj
such that X = {L1|L2| . . . |LP}. i.e, Lj ∈ RD1×D2

...×DN×Nj and
∑j=P

j=1 Nj = NS (total number of sam-
ple tensors)

2. FOR j = 1, 2, . . . , P

• Execute DATER algorithm on Lj and obtainUj .
• Project tensor samples X along Uj and obtain
X

j′ ∈ Rm
j
1
×m

j
2
...×m

j
N
×NS .

• let Y j = matricize(Xj′). i.e, By vectorizing
each tensor, obtain Y j ∈ RNS×(m

j
1
·mj

2
...m

j

N
)

3. END

4. Let Y = {Y 1|Y 2| · · · |Y P } ∈ RNS×
Pj=P
j=1

(mj
1
·mj

2
...m

j

N
)

(column-wise augmentation)
This partitioning technique, illustrated in 2 dimensions is shown
in gure 2. As a more concrete example, the data used in the
current work can be considered. From the 1.38 hours of audio
data, NS ≈ 5 × 105 ( each RD1=64×D2=12 ×D3=5) tensors,
belonging to c = 2 classes are extracted. For the DATER al-
gorithm, unfolding along the rst dimension would result in
a 64× 3·107 matrix, a size that is prohibitive from a compu-
tational standpoint. This is also a problem when the tensor
data set is unfolded along the other dimensions. But, if the
data is partitioned into P = 50 smaller sets, (Nj = 104∀ j),
unfolding would result in ( 50 times) smaller matrices. This
would also result in P = 50 U

j projection matrix sets.
Since it is a 2 class problem, mj

k = 1∀ j, k. Therefore

eachUj′ results in a mapping from 64× 12× 5 space to a 1-
dimensional line. By column-wise augmentation, this results
in

∑j=P

j=1 (m
j
1 ·m

j
2 . . .m

j
N ) = 50, and Y ∈ RNS=(5·105)×50

which is the reduced dimension data set available for training
(instead of the initial 5 · 105×3840 set). Each column of the
resulting matrix Y is the projection of all the data points on
projections obtained from individual partitions. While gure
2 is shown in 2 dimensions, the data points are actually in a
very high dimensional space. It however, also shows that this
partitioning procedure is not speci c to tensor representation.
As illustrated, it can also be used for FDA of 2-mode data.
This partitioning is also used for FDA to compare CR with
MFCCs. Next, the results of classi cation experiments are
presented.

4. RESULTS

The performance of a 5 nearest neighbour (5NN) classi er
and decision stump classi er with AdaBoost, as a function
of the number of projections (or columns) used in the ma-
trix Y is shown in gure 3. Using only 1 or 2 projections,
(Y ∈ RNS×2) the average accuracy (and the true positives
rate) of the classi ers using the CR is about 95%. This is
about 18-25% better than the performance of MFCCs for the
same number of projections.

For MFCCs, as the number of projections (columns of Y )
increases, the classi er accuracy increases. This trend can be
observed in both classi ers. However, for the CR, there is no
signi cant increase with more projections (F-measure=98.4%
for 5NN and 94.1% for AdaBoost for 10 projections). Even
with 10 projections, the performance of MFCC features (F-
measure=93.5% for 5NN and 71.2% for AdaBoost with 10
projections) is less than the performance of using just 1 or 2
projections of the CRs. However, for MFCCs, by partitioning
the data and using multiple projections, this performance is
better than the average baseline accuracy that is obtained by
FDA on the whole data set (also shown in gure 3).

5. DISCUSSION AND CONCLUSION
In this work, discrimination of two-types of noise sources:
machine generated (such as vehicle noise, engine noise, print-
ers, fax and telex machines etc.), versus other natural noise
sources (rainfall, waves on a seashore, blowing wind etc.)
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Fig. 3. 5 nearest neighbour (left), AdaBoost (right) classi er results (average accuracy and true positives rate) of the corti-
cal representation (CR) versus MFCCs as a function of number of projections included. (90/10% train/test split,1 -machine
generated, -1 -other noise)

was presented. Performance of the pattern classi ers was bet-
ter using the cortical representation (CR) as opposed to us-
ing MFCCs. To reduce the dimension of the extracted data,
a generalized version of the discriminant analysis for multi-
dimensional tensor representation was used. Discriminant
analysis of this large data set was made tractable by a new
data partitioning technique. Intuitively, discriminant analysis
on a subset of the whole data gives rise to a projection that
is optimal for each smaller subset. This gives rise to many
projections for the whole data set. When the information ob-
tained from multiple projections is used for classi cation, it
results in higher classi cation accuracy (as opposed to sin-
gle projection obtained by discriminant analysis on the whole
data). This partitioning technique makes training classi ers of
large dimensional data sets feasible. It can also be extended
to real-time processing problems.

From the high correct classi cation results, it can be con-
cluded that the two noise types in question are effectively dis-
cernible using the cortical representation. The performance
differential with respect to MFCC features is signi cant. This
better performance can be attributed to the high resolution
multi-scale spectral analysis of the cortical processing, which
in effect, also naturally captures temporal properties of audio
(due to time-frequency duality). Whereas, with MFCCs this
had to be approximatedwith delta (Δ) and delta-delta (Δ−Δ)
features.

As suggested in [3], as a part of future work, we would
like to use this type of bio-inspired feature based discrimi-
nation ability to robustly represent various audio scenes in
an attribute mid-level representation (speech-like, harmonic,
machine-noise like, etc.) and use higher-level decision to clas-
sify a given audio scene.
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