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ABSTRACT

Audio segmentation has applications in a variety of contexts,
such as audio information retrieval, automatic sound analysis, and as
a pre-processing step in speech recognition. Extended Baum-Welch
(EBW) transformations are most commonly used as a discriminative
technique for estimating parameters of Gaussian mixtures. In this
paper, we derive an unsupervised audio segmentation approach us-
ing these transformations. We nd that our algorithm outperforms
both the Bayesian Information Criterion (BIC) and Cumulative Sum
(CUSUM) segmentation methods. In particular, our EBW segmenta-
tion algorithm provides improvements over the baseline approaches
in detecting landmarks of short duration and minimizing landmark
oversegmentation. In addition, we show that the EBW approach pro-
vides faster computation compared to the baseline methods.

Index Terms—Acoustic signal detection, gradient methods,
unsupervised learning.

1. INTRODUCTION

Many audio streams, such as television shows or radio broadcasts,
contain audio from a wide variety of sources, including speech, mu-
sic and laughter. Since each source varies in acoustic nature, a single
method cannot be used to process the audio stream. Thus, audio seg-
mentation has become an important pre-processing step to divide an
audio stream into homogenous segments, where each segment can
be handled in a different manner. Furthermore, the rapid increase in
the amount of audio data in recent years has increased the need for
segmentation algorithms that are computationally ef cient.

Current approaches for audio segmentation include both super-
vised and unsupervised techniques. Supervised segmentation meth-
ods can be categorized as model-based or decoder-based. In model-
based segmentation [1], Gaussian mixture models are constructed
for a xed set of acoustic classes. A maximum a-posteriori approach
can be used to classify the input audio stream and segmental bound-
aries are delineated at changes in the audio class. In decoder-guided
segmentation [2], speech and silence models are used to decode the
input audio stream and the input is divided into segments at these
silence locations. Model-based methods perform classi cation over
a small number of frames in the audio stream, and are able to de-
tect short duration segments. However, both of these methods re-
quire training models for each audio class to be used in segmenta-
tion. Thus they are limited to applications where acoustic classes are
known a priori and a large amount of training data is available.

Unsupervised audio segmentation approaches are generally de-
rived as a likelihood ratio test between two hypotheses of change

and no change for a given observation sequence. Examples of this
approach include both BIC [3] and CUSUM [4]. These methods
do not require prior knowledge of audio classes, as models are esti-
mated directly from the observation sequence, thus allowing them to
serve a wider range of applications. However, BIC estimates models
for every candidate change point within an observation sequence [3]
and is computationally expensive. In addition, both methods detect
changes over a large window and tend to miss many short-duration
segments. Furthermore, they often suffer from over-segmentation in
regions of very rapid acoustic change, such as music.

Extended Baum-Welch (EBW) transformations have been used
extensively in the speech recognition community as a discriminative
training technique to estimate model parameters of Gaussian mix-
tures. Given an initial model and input data, [5], [6] derive an ex-
plicit formula to measure the gradient steepness required to estimate
a new model via the EBW transformations. This gradient measure-
ment is an alternative to likelihood to describe how well the initial
model explains the data.

In this paper, we present a novel segmentation approach using
the EBW transformations. Speci cally, we rede ne the likelihood
ratio test used in unsupervised segmentation with a measure of gra-
dient steepness. We show that our segmentation algorithm is able to
outperform both BIC and CUSUM, and speci cally improves upon
the short-duration missed landmark and oversegmentation problems.
Finally, we demonstrate that the EBW method provides faster com-
putation time compared to the baseline methods.

In the following sections, we provide background on the EBW
transformations. Our implementation of the segmentation algo-
rithms is described in Section 3. Section 4 presents the experiments
performed, followed by a discussion of these results in Section 5.
Finally, Section 6 concludes the paper and discusses future work.

2. EXTENDED BAUM-WELCH TRANSFORMATIONS

2.1. Motivation of using EBW Transformations

Given some input data, there are many different approaches used to
calculate how well a model represents this data. One common ap-
proach is to calculate the likelihood, that is p(data|model). Another
method is to calculate the gradient, as shown in Figure 1. Given an
initial model for our data and an objective function, we can estimate
a new model for our data by nding the best step along the gradient
of the objective function. We can think of the gradient slope as mea-
suring how much we have to adapt an initial model to t the data.
More speci cally, a steep slope indicates the initial model does not
t the data well, while a at slope indicates the initial model is a

I  2091424407281/07/$20.00 ©2007 IEEE ICASSP 2007



initial model

for data

optimal model 

for data

gradient updated 

model objective 

function

Fig. 1. EBW Model Update Graph

good t for the data. The EBW transformations provide solutions to
estimate this new model, and also provide a measure of the gradient
steepness to explain the quality of the initial model to t the data.

2.2. Derivation of EBW Transformations

The EBW procedure involves continuous transformations that can
be described as follows. Assume that data yn

k = (yk, ...yn), from
frames k to n, is drawn from a multivariate Gaussian, with each
component described by the following mean and variance parame-
ters ε j = {ε j , ε j}. Let us de ne the probability of frame yi ∈ yn

k

given model ε j as:

zj
i = p(yi|ε j) =

|Δj |
−1/2

(2ε )n/2
e−1/2(yi−δ j)T Σ−1

j
(yi−δ j) (1)

Let Fk,n(zj
i ) be some objective function over zj

i and cj
i =

zj
i

δ

δz
j
i

Fk,n(zj
i ). Given this function, the EBW transformations pro-

vide a way to estimate parameters ε̂ j(C) = {ε̂ j(C), Δ̂j(C)} as:

ε̂ j = ε̂ j(C) =

P
i∈I cijyi + Cε jP

i∈I cij + C
(2)

Δ̂j = Δ̂j(C) =

P
i∈I cijyiy

T
i + C(ε jε

T
j + Δj)P

i∈I cij + C
≥ ε̂ j ε̂

T
j (3)

Here C is a large constant chosen such that value of the objective
function increases with each iteration, that is Fk,n(ẑj

i ) > Fk,n(zj
i ).

Using EBW transformations (2) and (3) such that ε j → ε̂ j(C)

and {zj
i } → {ẑj

i }, [5] derives a linearization formula between
Fk,n({ẑj

i }) and Fk,n({zj
i }) as:

Fk,n({ẑj
i }) ≥ Fk,n({zj

i }) = T j
k,n/C + o(1/C) (4)

Here T j
k,n measures the gradient required to adapt initial model

ε j to data yi, or equivalently how well the data is explained by the
initial model ε j . A large value in T means the gradient to adapt
the initial model to the data is steep and Fk,n({ẑj

i }) is much larger
than Fk,n({zj

i }). Thus the data is much better explained by the
updated model ε̂ j(C) compared to the initial model ε j . However
a small value in T indicates that the gradient is relatively at and
Fk,n({ẑj

i }) is close to Fk,n({zj
i }). Therefore, the initial model ε j

is a good model for the data. In the next section, we derive our EBW
segmentation approach using the gradient steepness value T .

3. UNSUPERVISED SEGMENTATION APPROACHES

The goal of a segmentation algorithm is to divide an audio segment
into homogeneous regions. Given an observation sequence in a xed

window length, unsupervised segmentation techniques are generally
derived as hypothesis testing problems. In hypothesisH0, no change
has occurred in the sequence, whereas in hypothesis H1 a change
has occurred. In this section, we describe the actual implementation
of the BIC, CUSUM and EBW segmentation techniques. A typical
approach for change detection can be described as follows:

1. Initialize start of sequence as f = 0 and end as l = wsize;

2. Look for a change in data from yf to yl

3. If change is found at point r, set f = r and l = r + wsize,
go to step 2

4. If no change is found, l = l + winres

5. If wsize > wmax, f = f + winres and l = r + wsize, go
to step 2

Below we discuss the speci c details of the BIC, CUSUM and
EBW segmentation methods.

3.1. Bayesian Information Criterion

BIC is a model selection problem which can be formulated as a log-
likelihood ratio between two hypotheses representing a change or no
change in a given observation sequence. It is penalized by a model
complexity term denoting the difference in number of model param-
eters in each hypothesis. Given observations (y1, . . . , yn) drawn
from a multi-dimensional Gaussian process, the two hypotheses for
a possible change at k can be formulated as follows:j

H0, y1, . . . , yn ≥ N(ε 0, Δ0)
H1, y1, . . . , yk ≥ N(ε 1, Δ1), yk+1, . . . , yn ≥ N(ε 2, Δ2)

The likelihood ratio can be reduced to the following decision
rule for a change detection at point k [3]:

ΔBICk =
1

2
(N ≥ k) log |Δ2| + k log |Δ1| ≥ N log |Δ0|)

≥
1

2
ε (d +

1

2
d(d + 1)) log N > 0 (5)

Here ε is a penalty factor which weights the model complexity
term, and d is the dimension of data yi. This test is applied to all
possible change points k within the observation and we choose the
change point which has the most positive ΔBICk > 0 value. The
model parameters under each test depend on the location of change
point k and are re-estimated via maximum likelihood for each new
hypothesized boundary within the observation sequence.

3.2. Cumulative Sum

CUSUM is another segmentation algorithm used in a variety of
change detection problems [4]. Under the assumption that each yi

is drawn from an independent, identically distributed process, the
CUSUM test has been shown to be optimal in minimizing the de-
tection time for a given false alarm rate [7]. Given observations
(y1, . . . , yn), the CUSUM test for a change at point k is as follows:j

H0, y1, . . . , yn ≥ N(ε 0, Δ0)
H1, y1, . . . , yk ≥ N(ε 0, Δ0) , yk+1, . . . , yn ≥ N(ε 1, Δ1)

Here parameters ε 0 = {ε 0, Δ0} are estimated from a few
samples in the beginning of the observation sequence, and ε 1 =
{ε 1, Δ1} from the end of the observation sequence [4]. Thus the
models are only estimated once for a given observation sequence and
are independent of the change point. If we de ne the log-likelihood
as log p(yk

1 |ε 1) =
Pk

i=1 log p(yi|ε 1), then the decision rule for the
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best change point within the observation sequence is derived as a
log-likelihood ratio between the two above hypotheses as follows:

k̂ = arg max
k

{log p(yn
k+1|ε 1) + log p(yk

1 |ε 0)≥log p(yn
1 |ε 0)} ≥ ε

(6)
The likelihood ratio is compared to an empirically determined
threshold ε to hypothesize a change point.

3.3. Segmentation via EBW Transformations

While CUSUM estimates models once in a data sequence and is
faster than BIC, estimated models can sometimes be poor when in-
ferred from few samples. Since the gradient steepness value T takes
into account model re-estimation using the entire data sequence, it
corrects for initial estimation error [8]. Thus our motivation for using
EBW for segmentation is to provide bene ts in segmentation perfor-
mance and computational ef ciency over the baseline methods.

First let us de ne the objective function Fk,n as the log-
likelihood over the data yn

k given model ε j as Fk,n(zj
i ) =Pn

i=k log p(yi|ε j). Using Equation 4 and the above objective func-
tion, [6] derives a closed-form expression for T . Given initial model
parameters ε j = {ε j , ε j} which are estimated similar to CUSUM
and data yn

k , the gradient steepness measure T j
k,n is written as:

T j
k,n =

1

2

X
r,l∈{1,...,d},r �=l

(
1

ε 4
jr

+
1

ε 4
jl

)

"
nX

i=k

(yir ≥ ε jr)(yil ≥ ε jl)

#2

+
dX

r=1

1

ε 2
jr

(
{

Pn
i=k[(yir ≥ ε jr)

2 ≥ ε 2
jr]}

2

2ε 2
jr

+ [
nX

i=k

(yir ≥ ε jr)]
2

)

(7)
With this formula for T , our segmentation criterion becomes:

k̂ = arg min
k

{T (yn
k+1|ε 1) + T (yk

1 |ε 0) ≥ T (yn
1 |ε 0)} ≥ ε (8)

Intuitively this means that we detect a change at point k̂
if (y1, . . . , yk) is explained better by ε 0 (i.e. T (yk

1 |ε 0)) and
(yk+1, . . . , yn) is explained better by ε 1 (i.e. T (yn

k+1|ε 1)), rather
than the entire sequence being explained by ε 0 (i.e. T (yn

1 |ε 0)). The
better the data is explained by a speci c set of models, the smaller T
is, so we look for the change point k which produces the minimum
T and again compare this to an empirically found threshold ε.

To improve upon missed landmark and oversegmentation prob-
lems inherent in unsupervised segmentation, we describe below
added re nement and merge stages using the EBW transformations.

3.3.1. Re nement Stage

Unsupervised segmentation methods tend to miss short duration seg-
ments since they look for changes over a large window length. To
alleviate this problem, we introduce a boundary re nement stage.
First, approximate boundaries are found via the EBW algorithm de-
scribed above. Let us denote these boundaries as B = (b1, . . . , bn).
Between two neighboring boundaries bi−1 and bi, we estimate a
model Mi from the data in this segment. If every observation in
the segment belongs to the same model, then if we compute the gra-
dient steepnesss measure T from a subset of data given the model
Mi, we would expect it to remain small. However, a large value in
T indicates that the data is not well explained by Mi. Thus during
re nement, for each segment we compute T for subsets of data in
the segment given model Mi. If T exceeds an empirically found
threshold in a given subset, we hypothesize a new boundary here.

3.3.2. Merge Stage

Furthermore, we introduce a merge stage to improve upon over-
hypothesizing boundaries in regions of fast acoustic change. Given a
set of segments from the rst two stages, S = (s1, . . . , sk), we now
check how similar data in two segments are. We estimate a model
Mi for data in si and compute a T value for data in si+1 using model
Mi. This is a measure of how wellMi explains data in si+1. If the
T value is below an empirically found threshold, the data in the two
segments are similar so we merge the two segments together.

4. EXPERIMENTS

4.1. Corpus

We perform segmentation experiments using the Computers in the
Human Interaction Loop (CHIL) Isolated Acoustic Event data set.
This database has been collected by the University Polytechnic of
Catalonia (UPC) for their Acoustic Event Detection and Classi ca-
tion tasks [9]. Our motivation for using CHIL stems from a future
goal of using EBW for a uni ed segmentation and classi cation sys-
tem. The acoustic variety in CHIL provides a good corpus for testing
these ideas. The set is divided into 3 sessions, with 10 participants
per session. Sounds are recorded in a closed room using 16 different
microphone types. At each session, each participant takes a different
place in the room and records isolated acoustic events from 15 dif-
ferent classes, including knocks, doors opening/closing, applause,
laughter, etc. In total, there are over 6000 change points per ses-
sion, which are annotated manually by UPC. In our experiments, the
data is sampled at 16kHz, and then windowed to 20ms frames with a
10ms overlap. 19 dimension MFCCs are calculated for each frame.

4.2. Evaluation Metrics

Two common errors can occur in segmentation algorithms. Type-I
errors occur if a true boundary is not detected. Here we de ne a
true boundary as detected if it is within 1 second of the hypothesized
boundary. Type-II errors occur if a hypothesized boundary does not
correspond to a true boundary. Type I and II errors can be measured
by precision and recall respectively, de ned as:

Precision =
# detections

total # true bndries
, Recall = # detections

# hyp. bndries

Segmentation can also be measured by the F-measure as:

F-measure =
2 ≥ Precision≥ Recall
Precision+ Recall

For our performance experiments, we train on the rst 40 waveforms
(≥ 2 hours) from session 1. Our thresholds for each algorithm are
chosen to minimize the F-measure. We then test on 100 recordings
(≥ 5 hours) from each session. In addition, we compute the execu-
tion time of the three algorithms, de ned as the time the CPU spends
executing the segmentation code. We compute this total time for 5.5
hours of data in session 1, and average the results over 5 trials.

5. RESULTS

Table 1 shows the evaluation metric scores for the CUSUM, BIC
and EBW algorithms, the latter with and without the re nement and
merge stages. Note that the BIC implementation discussed here also
includes a similar re nement and merge stage [10]. The EBW algo-
rithm outperforms CUSUM for all sessions. Each term in CUSUM
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CHIL Data Segmentation Results
Session 1

Precision Recall F-measure
EBWSeg, ref. & merge 0.87 0.83 0.85

EBWSeg 0.84 0.80 0.82
BIC 0.84 0.79 0.81

CUSUM 0.76 0.76 0.76
Session 2

EBWSeg, ref. & merge 0.88 0.82 0.85
EBWSeg 0.86 0.80 0.83
BIC 0.85 0.81 0.83

CUSUM 0.78 0.76 0.77
Session 3

EBWSeg, ref. & merge 0.88 0.83 0.85
EBWSeg 0.86 0.82 0.83
BIC 0.87 0.81 0.83

CUSUM 0.79 0.77 0.78

Table 1. Statistics for EBW, CUSUM and BIC Segmentation

calculates a likelihood of the data when models are estimated from
a subset of the data. However, each term T in EBWSeg captures the
difference between the likelihood of a data given the initial model
and the likelihood with a model estimated from the entire data se-
quence. CUSUM does not always provide the best estimate of data
with the initial model, so our model re-estimation via EBW using
the entire sequence is able to correct for this initial model error [8].

The performance of BIC and EBW are comparable, even though
BIC obtains a better estimate of model parameters at each hypothe-
sized boundary compared to EBW. One explanation is that the EBW
objective more closely matches the goal of segmentation. BIC is a
model selection problem, where the objective is to chose the best
set of models to explain data while limiting model complexity [3].
However, the objective of a CUSUM and EBW-hypothesized test is
to minimize detection time for a given false alarm rate [7].

Lastly, adding re nement and merge, EBW offers on average
a 2% absolute improvement over BIC and 7% over CUSUM, and
a t-test veri es these results to be statistically signi cant. Figure
2a shows a histogram of segment duration of missed boundaries for
each method. EBW has a 10.2% relative improvement in missed
boundaries over BIC and 17.2% over CUSUM. In particular, the g-
ure shows that EBW offers signi cant improvement for small seg-
ments. Figure 2b shows the normalized frequency of oversegmented
boundaries for each method. EBW offers a 19.7% relative improve-
ment in oversegmentation over BIC and 34.6% over CUSUM.
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Fig. 2. Histograms of missed and oversegmented boundaries

5.1. Computation Time

Table 2 shows the average total execution time on 5.5 hours of data
for the three methods. EBW performs more than 5 times faster than
BIC and 3 times faster than CUSUM. At each new hypothesized
boundary within an observation sequence, BIC re-estimates model
parameters. However, EBW and CUSUM only estimate model pa-
rameters once within an observation sequence. Yet, CUSUM com-
putes the inverse covariance and determinant in the likelihood for-
mulation, and is thus slower than EBW which computes variances.

Average Total Execution Time (hrs)
EBWSeg, ref. & merge 0.42

BIC 2.25
CUSUM 1.43

Table 2. Average Total Execution Time of Segmentation Algorithms

6. CONCLUSIONS AND FUTUREWORK

In this paper, we explored a speci c gradient steepness measure de-
rived from the EBWTransformations. We presented a novel segmen-
tation approach using this gradient measurement and found that our
segmentation method was able outperform both BIC and CUSUM
and provide faster computation time. The EBW transformations ap-
pear to be a general technique to explain the quality of a model used
to represent the data. We would like to explore using EBW in a vari-
ety of other contexts, including for other unsupervised segmentation
tasks, clustering and classi cation. In addition, we would like to
explore other approaches to measuring gradient steepness.
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