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ABSTRACT  
 
This paper addresses the problem of audio segmentation in 
practical media (e.g. TV series, movies and etc.) which usually 
consists of segments in various lengths with quite a portion of 
short ones. An unsupervised audio segmentation approach is 
presented, including a segmentation-stage to detect potential 
acoustic changes, and a refinement-stage to refine these candidate 
changes by a tri-model Bayesian Information Criterion. 
Experiments show that the proposed approach has good 
detectability of short segments and the novel tri-model BIC 
effectively improves the overall segmentation performance. 
 
Index Terms - audio segmentation, acoustic change detection, tri-
model Bayesian Information Criterion, data balance ratio  
 

1. INTRODUCTION 
 
Audio segmentation is also often called as acoustic change 
detection [1] which partitions the audio stream into homogenous 
segments by detecting changes of speaker identity, acoustic class 
or environmental condition. It is an essential step for audio 
clustering and classification as well as speaker clustering and 
tracking in many circumstances, thus plays an important role in 
various applications such as multimedia indexing, spoken 
document retrieval and speech recognition. 
       The current approaches of audio segmentation can be 
categorized into two major groups: the model based approach 
initializes a set of models for different acoustic classes from 
training corpus to classify the input audio stream so as to locate the 
changes [2]. However, in many cases, the pre-knowledge of 
speakers and acoustic classes are often not available. Therefore, 
unsupervised metric-based approaches are desirable in many 
applications. In metric-based approach, changes are determined by 
threshold on the basis of a distance computation for the input audio 
stream. Most of the distance measures come from statistical 
modeling framework, e.g. Kullback-Leibler distance, generalized 
likelihood ratio and others [3]. The hybrid of these two approaches 
is also applied. It incorporates a metric-based method as pre-
segmentation and a clustering procedure to obtain the training data, 
and then performs a model based re-segmentation [4]. 
       The BIC-based approach is first proposed in [1], which 
utilizes a sliding variable-size window to determine acoustic 
changes based on a model-selection criterion. It can be recognized 
as a special metric-based approach since the penalty term of BIC 
operates as a threshold. Based on BIC, a two-stage  segmentation 

is proposed in [5], which first segments the audio stream by a 
distance measure, then refines these changes by BIC sequentially. 
This two-stage framework consisting of segmentation and 
refinement (false alarm compensation) demonstrates the 
effectiveness, and has been widely adopted by many works in 
recent years [6, 7, 8, 9]. 
      In the previous works [1, 3, 4, 5, 6, 7, 8], the evaluated audio 
often consists of relative long acoustic segments (>2s or 3s), and 
the short segments (1-3s) are often neglected because they are 
difficult to be detected. However, the presences of short segments 
are usually frequent in practical media such as TV series, movies, 
phone conversations, and even broadcast news e.g. interview. 
Thus, to detect the short segments is a main challenge when 
applying the audio segmentation into real applications. 
      In this paper, an unsupervised audio segmentation approach is 
presented with emphasizing to detect the short segments. A novel 
tri-model BIC is also proposed. Section 2 details the algorithm. 
Section 3 introduces the theory of the proposed tri-model BIC. 
Experiments and analysis are presented in section 4. Section 5 
gives the conclusion. 

 
2. SYSTEM FRAMEWORK 

 
The proposed approach is mainly consisted of five modules: pre-
processing, feature extraction, segmentation, refinement, and post-
processing. The pre-processing and post-processing modules are 
alternative regarding to the property of the input audio data which 
is down-sampled into 16 kHz with uniform format of 16bits, mono 
channel. 
       In analog to [5], the algorithm is mainly based on a two-stage 
analysis: the first-stage is a metric-based segmentation which uses 
a distance computation to determine the candidates of acoustic-
changes in the audio stream; and the second-stage is a criterion-
based refinement which utilizes a tri-model Bayesian Information 
Criterion to validate or discard these candidates. 
       Before feature extraction (a feature set of 14 MFCCs with log-
energy computed in 20ms frame with 10ms overlapping is 
applied), a VAD (Voice Activity Detection) procedure can be used 
as pre-processing to remove silence or breathing from the audio 
data in order to facilitate the segmentation procedure. However, 
this will lead to additional computational cost, so it is alternative 
regarding to the proportion of silence in the audio data as well as 
the needs of the oriented applications. 
       If the pre-processing module is applied, a corresponding post-
processing module should implement to insert the silence back in 
order to align the time. If a computed-change is close to a silent 
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part within a certain distance (0.5s), it is moved to the nearest 
boundary of that silence segment. 
 
2.1. Segmentation 
 
The first-stage relies on a computation of distance between two 
adjacent analysis windows of the same size (1s or 2s) shifted by a 
fixed step (0.1s) along the whole feature data of the input audio. In 
each analysis window, a single multi-dimensional Gaussian 
process is estimated from the feature data via maximum likelihood 
estimation. The symmetric Kullback-Leibler (KL2) distance [10] is 
chosen here. This process results in a graph of distances with 
respect to time. The graph is smoothed by a low-pass filtering 
operation, and then all the “significant” local maxima that 
represent potential change points are acquired by searching the 
graph. 
       The threshold condition proposed in [9] is utilized: A local 
maximum is regarded as significant if it satisfies the condition 
|max minl|>  or |max minr|> , where  is a fraction,  is the 
standard deviation of the distance graph, minl and minr are the left 
and the right minima around the peak max respectively; and no 
higher local maximum near it within a certain distance (0.5s).  
 
2.2. Refinement 
 
In the second-stage, a BIC value is computed for each potential 
change point detected in the first-stage to validate or discard this 
point. For example in [5], given {s1, …, sn} is the set of candidate 
change points found in the first stage, a BIC value is computed 
for each pair of windows [si-1, si], [si, si+1]. If the value is negative, 
a change point is identified at time i. If not, the point si is discarded 
from the candidate set, so that the BIC value is now computed for 
the new pair of windows [si-1, si+1], [si+1, si+2].  

The refinement approach in [5] is an iterative implementation. 
However, if an actual change point is missed in the first-stage or 
wrongly discarded in the second-stage, the segment containing this 
point would contaminate the following iterations, especially for the 
long segment, since all the data of this segment would be adopted 
in the next iteration. Therefore, we propose a data balance criterion 
between the two segments around a candidate point: if the data 
ratio of the longer segment to the shorter one exceeds a limitation 
denoted as Data Balance Ratio (DBR), the residual data far from 
the candidate point in the longer segment would be excluded in the 
current iteration. The computation is carried on with DBR 
limitation on the validated indexes sequentially as illustrated in 
Fig.1. This approach has two advantages: first, it can decrease the 
probability of data contamination in long segments. Second, it can 
improve the computational efficiency since the residual data 
needn’t be computed. The DBR value is set as 4 in our algorithm. 

3. TRI-MODEL BIC 
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Fig.1 Algorithm of BIC refinement in the second stage

 
3.1. Traditional Bi-model BIC 
 
The Bayesian Information Criterion (BIC) is a likelihood criterion 
penalized by the model complexity [1]. It states that the quality of 
a model M to represent a data sequence X = {x1 ,…, xn} is given by  

1( ) log ( , , | ) ( ) log
2nBIC M L x x M M NK  

with L(x1 ,…, xn | M) representing the likelihood of model M 
estimated from X via maximum likelihood principle and K(M) 
representing the complexity of model M, equal to the number of 
free parameters of the model.  is a penalty weight, theoretically 
equal to 1; however, it is a tunable parameter as threshold 
practically.  
       The problem of determining if there is a change at point i in X 
can be converted into a model selection problem. The alternative 
models are: (1) A single-segment model M0 which assumes that X 
is generated by a single Gaussian process, that is {x1 ,…, xn} ~ 
N( 0, 0). (2) A two-segment model M1 which assumes that X is 
generated by two distinct Gaussian processes, that is {x1 ,…, xi} ~ 
N( 1, 1) and {xi+1 ,…, xn} ~ N( 2, 2). The BIC values for the two 
models and the difference between the two BIC values are: 

0 1 0 0 0( ) log ( , , | , ) ( ) log
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N, N1, N2 are the number of data vectors in the complete sequence, 
the subset {x1 ,…, xi}, and the subset {xi+1 ,…, xn} respectively. d is 
the dimension of the data vector. A negative value of BIC 
indicates that the two-segment model fits the data sequence X 
better, means that there is a change at point i. We denote this 
traditional approach as bi-model BIC. 
 
3.2. Tri-model BIC 
 
As described above, the value of BIC determines whether there is 
a change at point i in the data sequence X = {x1 ,…, xn}. However, 
there is a defection in the BIC formulation of the two-segment 
model: it separates the data sequence into two heterogeneous parts 
for modeling, but recognizes them as two homogeneous parts in 
data amount for penalty, which is somewhat paradoxical. As a 
result, the penalty term P = /2·K(M)·logN is independent of the 
point i where a change is assumed to occur. It is obvious that P 
will keep the same across all positions from x1 to xn . This implies 
that different two-segment models of X will be penalized by the 
same value, and does not adapt to the position of the assumed 
change, which is somewhat unreasonable. 
       Therefore, we propose another concept that considers the two-
segment model as two independent single-segment models to 
describe the occurrence of a change at point i in X and uses three 
models to formulate the problem of determining an assumed 
change. The three models are: (1) A single-segment model M0 
which assumes that X = {x1 ,…, xn} is generated by a single 
Gaussian process N( 0, 0). (2) A single-segment model M1 which 
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assumes that X1 = {x1 ,…, xi} (the first part of X) is generated by a 
single Gaussian process N( 1, 1). (3) Another single-segment 
model M2 which assumes that X2 = {xi+1 ,…, xn} (the remainder 
part of X) is generated by a single Gaussian process N( 2, 2). The 
BIC values for the three models are: 

0 1 0 0 0( ) log ( , , | , ) ( ) log
2nBIC M L x x M NK  

1 1 1 1 1( ) log ( , , | , ) ( ) log
2iBIC M L x x M NK  

1

2 1 2 2 2( ) log ( , , | , ) ( ) log
2i nBIC M L x x M NK  

2

Now, the formula of BIC can be deduced based on the definitions 

2( ) ( )IC M BIC M  
of the three models: 
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A negative value of BIC indicates that the quality of modeling 

The algorithm

 Dcj31: Excerpt of Dae-Jang-Geum Korean TV Series (Episode 

 dcast News 

 Phone Conversation 

 
cj31 and Swb1 are preprocessed by VAD, while Hub4 is not so 

 recall rate (RCL), precision (PRC) 

the data as a whole sequence by a single Gaussian process is less 
than the overall quality of modeling the data as two individual 
sequences by two independent Gaussian processes. Thus, a change 
could be considered as occurring at point i when the BIC<0. We 
denote this approach as tri-model BIC. 
 

4. EXPERIMENT AND ANALYSIS 
 

 is evaluated on three types of corpuses: TV series, 
broadcast news and phone conversation. Unlike the previous works 
that only mark relative long segments (>2s or 3s) as detectable 
units, our work pays more attention to the detectability of short 
segments (1-3s). Therefore, more precise resolution in segment 
boundary location is required in our approach. 
 

.1. Data 4
 

31, 10 minutes), 76 target-changes (speaker and acoustic-class 
changes), speech with complex background audio.  
Hub4: Subset of Hub4 1997 Mandarin Broa
(LDC98S73, 30 minutes), 84 target-changes (speaker-changes), 
speech including little spontaneous speech. 
Swb1: Subset of Switchboard 1997 English 
(LDC97S62, 10 minutes), 44 target-changes (speaker-changes), 
pure spontaneous speech. 

D
as to test the robustness of the algorithm with audio stream 
contaminated by silence or breathing. A statistics of short 
segments in each dataset is presented in Table 1. It could be seen 
that the evaluated datasets have quite a lot of short segments. 
 

.2. Methodology 4
 

he algorithm is evaluated byT
and F-measure [3] to determine the best segmentation performance. 
Recall rate is stressed more than precision in the experiments since  

 short segments 
/ total segments 

boundaries of short segments 
/ total target-changes 

Dcj31 32/77 = 41.6% 50/76 = 65.8% 
Hub4 16/85 = 18.8% 25/84 = 29.8% 
Swb1 10/45 = 22.2% 18/44 = 40.9% 

overall 58/207 = 28.0% 93/204 =45.6% 
 

Table 1. The statistics of short segments in the datasets 
 
 
false alarms can be compensated by following procedures such as 
clustering or classification. The analysis window and  are set as 
“1s, 15%”, “2s, 30%” and “1s, 30%” for the dataset of Dcj31, 
Hub4 and Swb1 respectively so as to recall most target-changes 
with relatively fewer false alarms in the first-stage. 
      In most previous works, for instance, [7] interprets if there is a 
gap (e.g. silence, breathing or noise) between two heterogeneous 
segments, the corresponding target-change is allowed to be at any 
place in that gap. However, our work requires the target-change to 
correspond with one of the two boundaries of a segment; all the 
computed-changes in the gap are considered as false alarms. It is 
obvious that our evaluation methodology is more rigorous. 
 
4.3. Result 
 
Both the traditional bi-model BIC and the proposed tri-model BIC 
are implemented respectively. The penalty weight  (with a tuning 
step of 0.05) is set to maximize the F-measure to achieve the best 
segmentation performance of each approach on each dataset. The 
corresponding F-measure, recall rate and precision are presented in 
Table 2. A statistics of recall rates of short segments and other 
target boundaries (excluding the boundaries of short segments) is 
presented in Table 3. 
 

          model  F RCL PRC 
tri- 1.15 0.734 81.6% 66.7% Dcj31 
bi- 0.85 0.703 76.3% 65.2% 
tri- 1.75 0.683 82.1% 58.5% Hub4 
bi- 1.35 0.660 77.4% 57.5% 
tri- 1.30 0.647 75.0% 56.9% Swb1 
bi- 1.00 0.638 68.2% 60.0% 
tri- - 0.694 80.4% 61.0% Over-

all bi- - 0.671 75.0% 60.7% 
 

Table 2. The best segmentation performances  
via tri-model BIC and bi-model BIC on the datasets 

 
From Table 2 and Table 3, it could be seen that tri-model BIC 
almost wins bi-model BIC in all aspects. In the overall statistics, 
tri-model BIC leads to more than 7% relative improvement in 
recall rate without decrease in precision compared with bi-model 
BIC, and gets about 5% and 9% relative improvements in 
detecting short segments and other target boundaries respectively.  
       These facts show that tri-model BIC is explicitly superior to 
bi-model BIC in the segmentation task. This can be interpreted via 
the difference between the two BIC formulations, which mainly 
focus on the penalty term (threshold): the penalty term with better 
adaptability will achieve better segmentation performance as the 
tri-model BIC does. 
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          model RCL of short 
segments 

RCL of other 
boundaries 

tri- 84.0% 76.9% Dcj31 
bi- 78.0% 73.1% 
tri- 64.0% 89.8% Hub4 
bi- 68.0% 81.4% 
tri- 61.1% 84.6% Swb1 
bi- 55.6% 76.9% 
tri- 74.2% 85.6% Overall 
bi- 71.0% 78.4% 

 
Table 3. The detectabilities of short segments and other  

boundaries via tri-model BIC and bi-model BIC on the datasets 
 
 
4.4. Performance analysis 
 
The segmentation results via tri-model BIC on the evaluated 
datasets are further analyzed in comparison with the results 
without DBR limitation in the refinement stage as Table 4 
presented. 
 

          DBR RCL FAR1 FAR2 AMM 
4 81.6% 17.2% 16.1% 0.128s Dcj31 

 80.3% 20.0% 15.8% 0.130s 
4 82.1% 21.2% 20.3% 0.280s Hub4 

 79.8% 24.0% 20.7% 0.281s 
4 75.0% 32.8% 10.3% 0.216s Swb1 

 72.7% 35.6% 10.2% 0.235s 
4 80.4% 22.3% 16.7% 0.210s Over-

all  78.4% 25.7% 17.1% 0.215s 
 

Table 4. Performance analysis of the approach via tri-model BIC 
 
The false alarms are evaluated by means of two types: FAR1 
means there is a computed-change within a homogenous segment; 
FAR2 means there is a computed-change in the position where an 
acoustic-change exists but not a target-change. For instance, FAR2 
in Dcj31 often represents as one of the boundaries of an 
instantaneous speech or music segment (<1s), as well as some 
environmental sound-effects. In Hub4, FAR2 is mostly caused by 
long silence (>1.5s) including gaps (>1s) between two speaker 
segments, and some background-audio during outdoor interview. 
In Swb1, FAR2 often represents as one of the boundaries of a short 
word (<1s) like “hmm”, “yeah” or “ok” when two speakers speak 
simultaneously. The cause of FAR2 may derive from the first stage 
via the metric-based segmentation which is more sensitive to every 
change (intonation or environment) [5]. 

The refinement approach in [5] could be recognized as a 
special case of the proposed refinement approach when the DBR 
value tends to infinite. Actually, the DBR limitation significantly 
improves the computational speed in the experiments. It could be 
seen from Table 4 that the DBR limitation effectively improves 
RCL and decreases FAR1 but has little effect on FAR2 since there 
are indeed acoustic-changes.  

But, from the view of detecting all acoustic-changes including 
silence [8], our approach seems to be more sensitive and accurate 
than the previous works, especially for the short segments. For ins- 
 
 

tance, the recall rates of short segments reported in [1] and [6] are 
30.9% and 37.6% respectively. However, from the overall 
statistics in Table 3, it could be seen that nearly 75% of short 
segments are successfully detected in our approach. 

The average mismatch (AMM), which reflects the accuracy for 
the computed segment boundaries [8], indicates that our approach 
also has very good resolution (about 0.2s) in segment boundary 
location. 
 

5. CONCLUSION 
 
In this paper, we present an unsupervised audio segmentation 
approach which aims at processing real-world media such as TV 
series, broadcast news and phone conversations, which usually 
consist of segments in various durations. The proposed tri-model 
BIC approach shows better segmentation performance and higher 
resolution of segment boundary location than the previous works. 
The proposed data balance criterion, for the refinement stage of the 
approach, also proves to be effective by experiments. 
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