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ABSTRACT

This paper proposes a new speech dereverberation approach based
on a statistical speech model. An autocorrelation codebook is intro-
duced as a model that can represent time-varying short-time speech
characteristics corresponding to the cepstrum and harmonics. The
speech dereverberation is formulated as a likelihood maximization
problem, in which the quality of a speech signal is recovered by
turning the signal into one that is probabilistically more like a clean
speech. Two dereverberation algorithms are derived based on dif-
ferent scenarios, regularized inversion and inverse filter estimation.
Experimental results show that the proposed approach allows us to
reduce both reverberation and noise with the regularized inversion,
and to estimate inverse filters that can dereverberate signals effec-
tively from just a small number of observed signals.

Index Terms— Dereverberation, Autocorrelation codebook, Like-
lihood maximization, Inverse filtering, Regularization

1. INTRODUCTION

Speech signals captured in an enclosure such as a conference room
will inevitably contain reverberant components due to reflections
from the walls, the floor or the ceiling. These reverberant compo-
nents are detrimental to the quality of the signal and often cause se-
rious degradation in many applications including automatic speech
recognition.

A number of techniques have been proposed to mitigate the re-
verberation problem. Microphone arrays have been used to focus on
sound sources in the ”look” direction, while suppressing reflected
signals from other directions [1, 2]. Deconvolution by inverting the
room impulse response, which can be considered an aggregate of all
the reflections with corresponding delays, has also been suggested
[3, 4, 5]. However, the real time estimation and tracking of a room
impulse response from the source (which may be moving as in a
meeting) to the microphone (which may or may not be fixed) remain
elusive.

Recently, recognizing the fact that the signal of interest is often
a speech signal that manifests certain characteristics (e.g., harmonic-
ity in voiced sounds), many have suggested using these strong source
attributes to aid the estimation of a dereverberation filter to suppress
the reverberant components in the microphone signal (e.g., [6]). The
use of source characteristics led to a new formulation of dereverber-
ation as a problem of probabilistic modeling in which the objective
is to design a filter (as part of an overall probabilistic model) which
would turn the reverberant speech into a signal that is probabilisti-
cally more like a clean speech. The maximum likelihood estimation
can be employed to solve the resultant optimization problem.

The probabilistic model formulation of the dereverberation prob-
lem has another interesting technical implication. If we look at dere-
verberation as a speech enhancement problem (as opposed to an in-
version problem or a blind deconvolution problem), past experiences
indicate that better results can be expected if the solution adapts to
the time-varying characteristics of the speech signal. Therefore, it is
reasonable to include the instantaneous “state” of the speech signal,
which gives proper information about the nature of the speech char-
acteristics at a particular time, in the overall objective function as
useful source model constraints. It is thus the purpose of this paper
to propose a generalized probabilistic formulation of the dereverber-
ation problem and a solution thereto. A side benefit of this particular
formulation is that it allows us to relate speech dereverberation to
other conventional speech enhancement approaches such as Wiener
filtering.

This paper is organized as follows: Section 2 presents the prob-
abilistic formulation of the speech dereverberation with a statisti-
cal speech model based on an autocorrelation (AC) codebook. Two
dereverberation scenarios are discussed according to this formula-
tion, and two new dereverberation methods are designed based on
regularized inversion and inverse filter estimation. In section 3, the
effectiveness of the present methods is examined by preliminary ex-
periments. We show the present regularized inversion is capable of
reducing reverberation and noise simultaneously and that the inverse
filter estimation enables us to achieve high quality dereverberation
with only a few seconds observation. Concluding remarks are pro-
vided in section 4.

2. MODEL BASED SPEECH DEREVERBERATION

Suppose a single speech source is captured by two microphones with
a certain amount of observation noise. Let st, x

(l)
t , and d

(l)
t be dig-

itized sequences of the source, the observed, and the noise signals,
respectively, where t and l are the time and microphone indices, re-
spectively. Further let s̄t, x̄t, and d̄t be the corresponding vector
representations with lengths of K, 2L, and 2L, respectively, defined
by

s̄t = [st st−1 . . . st−K+1]
T,

x̄t = [(x̄
(1)
t )T (x̄

(2)
t )T ]T, where x̄

(l)
t = [x

(l)
t x

(l)
t−1 . . . x

(l)
t−L+1]

T, and

d̄t = [(d̄
(1)
t )T (d̄

(2)
t )T ]T, where d̄

(l)
t = [d

(l)
t d

(l)
t−1 . . . d

(l)
t−L+1]

T .

Then, the observation process can be modeled by

x̄t = as̄t + d̄t, (1)

where a is a stationary convolution matrix (2L×K) defined based on
a 2-channel room impulse response (RIR). Let ā = [(ā(1))T (ā(2))T ]T
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where ā(l) = [a
(l)
1 a

(l)
2 . . . a

(l)
M ]T is the single channel RIR from the

source to the l-th microphone. Then a is represented as

a =

»
a(1)

a(2)

–
, and

a(l) =

2
666664

a
(l)
1 . . . a

(l)
M 0 . . . 0

0 a
(l)
1 . . . a

(l)
M 0

...
...

. . .
. . .

. . . 0

0 . . . 0 a
(l)
1 . . . a

(l)
M

3
777775

In this paper, we take the above signals, x̄t, s̄t, d̄t, and ā as
realizations of random variables X̄t, S̄t, D̄t, and Ā, respectively, and
formulate speech dereverberation as the problem of finding a certain
parameter set θ that maximizes a log likelihood function defined as

L(θ) =
X

t

log p(X̄t, S̄t|Ā, H̄t; θ),

=
X

t

log p(X̄t|S̄t, Ā; θ) +
X

t

log P (S̄t|H̄t; θ), (2)

where H̄t is a random variable that represents the state of speech at
time t that we discuss in detail in the following sections. Because
s̄t is the signal to be estimated, it is taken as a parameter included
in θ throughout this paper. The probability density function (pdf)
p(X̄t|Ā, S̄t; θ) can be specified from the pdf of D̄t, i.e., p(D̄t; θ),
because of the relationship (1). Similar to most spectral subtraction
scenarios, hereafter we assume that p(D̄t; θ) is given in advance (or
can be estimated on line).

One innovative point in this paper is to adopt a posteriori pdf
p(S̄t|H̄t; θ) determined based on the statistics of the clean speech
data. For this purpose, we extract a set of feature vectors, referred
to as codewords in an autocorrelation (AC) codebook, each of which
contains an autocorrelation function (ACF) of a short-time speech
segment, from certain speech database in advance, and use them to
represent the pdf. As consequence, we expect, the parameter set θ
that maximizes the likelihood function reflects both the condition (1)
and the speech model statistics.

2.1. Model of speech statistics with autocorrelation codebook

Although it is often assumed that a speech signal follows a super-
Gaussian distribution, such as a Laplacian distribution, it cannot
represent time-varying short-time speech characteristics such as the
cepstrum and harmonic structure. Therefore, it is difficult to re-
cover such speech characteristics precisely based only on this as-
sumption. In order to construct a speech model that can reasonably
represent short-time speech characteristics, we introduce the follow-
ing assumptions.

1. Each short-time segment of a speech signal at time index t
with length N (N � K), ¯̄st = [st st−1 . . . st−N+1]

T , can
be categorized into one of a finite number of states, Ht = ht,
where 1 ≤ ht ≤ Ns, and Ns is the assumed number of
distinctive states of speech;

2. In each state, the waveform of the signal is a stationary ran-
dom process that can be modeled by a Gaussian pdf with an
autocorrelation (AC) matrix rh ≈ E{¯̄st ¯̄s

T
t }; i.e.,

p( ¯̄St = ¯̄st|Ht = ht) = N (¯̄st; 0, rht)
1. (3)

1Hereafter, we often denote a pdf omitting the names of random variables,
for example, denote p(S̄t = s̄t|H̄t = h̄t) by p(s̄t|h̄t).
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Fig. 1. A method for generating an autocorrelation codebook

According to the above assumptions, the speech statistics are mod-
eled by a set of AC matrices rh for h = 1 to Ns, or equivalently a
set of autocorrelation functions (ACFs), referred to as the codewords
in an AC codebook. The time-variation of the speech characteristics
can be represented by appropriately switching the AC codewords
frame by frame. With dereverberation, because ht is not given in ad-
vance, it is considered to be a parameter that is determined through
likelihood maximization.

It is important to note that we have introduced two different time
segments s̄t and ¯̄st in (1) and (3). The sequence s̄t in (1) is a “long-
time” segment of length K, roughly corresponding to the length of
the RIR; the sequence ¯̄st in (3) is a “short-time” segment of length
N from which the short-time speech characteristics of interest is ex-
tracted. In terms of their relationship, a long-time segment, s̄t, is
equal to a cascade of short-time segments, ¯̄st. Accordingly, we de-
note the state of a long-time segment, h̄t, as a cascaded sequence of
states corresponding to each of the short-time segments in s̄t. Then,
by assuming ¯̄St to be sequentially independent given Ht, the second
term in (2) can be rewritten as

X
t

log p(S̄t|H̄t; θ) =
X

t

log p( ¯̄St|Ht; θ),

as long as the corresponding range of summation in t is maintained.
Figure 1 illustrates a method that we adopted to generate the AC

codebook for the experiments in this paper. Speech signals were first
divided into short-time segments by windowing, then ACFs were
calculated for individual segments, and finally the LBG algorithm
[7] was used to cluster the ACFs and to generate the codewords. The
significance of the signal level with respect to codeword clustering
was separated from that of the spectral shape; that is, the distance
was measured separately for the energy and the shape of the ACFs.
For this purpose, the ACF was calculated after each segment had
been normalized by its energy, and the ACF coefficient at time lag
zero was replaced with the log of the energy. A Euclidean distance
between the modified ACF vectors was employed in clustering. (An
alternative to normalization and the choice of distance measure is
the likelihood distortion based on residual-normalized ACFs.) After
clustering, the energy of each codeword was restored based on its
coefficient at time lag zero. The AC matrices in (3) can be generated
by forming Toeplitz matrices based on the individual codewords. In
the following, we discuss two speech dereverberation scenarios that
involve AC matching.

2.2. Regularized inversion – dereverberation in noisy environ-
ment with given room impulse response

If we can assume that the source signal is a white Gaussian process
with zero mean and unity variance, and that the RIR can be measured
in advance, the maximum likelihood solution to (2) becomes

s̄t = (aT a + σ2
dI)−1aT x̄t.

Here, we also assumed that the noise pdf, p(Dt; θ), is given by
N (0, σ2

dI). The above equation corresponds to Tikhonov regular-
ization [8], and can greatly reduce the noise that is undesirably am-
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Fig. 2. Processing flow of regularized inversion

plified as the result of inverse filtering when a Moore-Penrose inverse
of a is simply applied to x̄t in (1).

With the AC codebook, the performance of the above technique
can be further improved because of the additional source statistics.
Here, we take s̄t and h̄t in (2) as unknown parameters to be opti-
mized and x̄t, ā, and p(Dt; θ) as given in advance, similar to the
conventional regularized inversion. After certain mathematical ma-
nipulations, we obtain the following equations that maximize the
likelihood function in terms of ht and s̄t, respectively.

ĥt = arg max
ht

p(¯̄st|ht; θ) → ht, (4)

ˆ̄st = (aT a + σ2
dr̄
−1
t )−1aT x̄t → s̄t. (5)

Here, r̄t is a block diagonal matrix that contains, as its diagonal
components, AC matrices rht corresponding to the state sequence
ht that represents the additional source information in the long-time
segment s̄t. According to (4) and (5), starting from certain initial
values, the likelihood function can be maximized up to a stationary
point by iteratively updating the sequences of the source states and
the source estimates in turn. Figure 2 summarizes the processing
flow.

Note that (5) can be viewed not only as inverse filtering but also
as a form of Wiener filtering in the AC domain, offering the possibil-
ity of reducing both reverberation and additive noise simultaneously.
This can be confirmed by the fact that the equation becomes equal to
the Moore-Penrose inverse when σd = 0 (i.e., the noise-free case),
while it can be rewritten as s̄t = (r̄t +σ2

dI)−1r̄tx̄t when we assume
a to be an identity matrix (i.e., the reverberation-free case).

2.3. Inverse filter estimation in noise-free environment

As our second example, we discuss an inverse filter estimation method
based on the AC codebook. For the sake of simplicity, we deal with
a condition with no observation noise, and rewrite (1) using a 2-
channel inverse filter w̄ = [(w̄(1))T (w̄(2))T ]T of the RIR ā as

¯̄st = xtw̄, (6)

where xt is a matrix representation of x̄t, which is defined as xt =

[x̄′t x̄′t−1 . . . x̄′t−N+1]
T and x̄′t = [x

(1)
t x

(1)
t−1 . . . x

(1)
t−M+1 x

(2)
t x

(2)
t−1

. . . x
(2)
t−M+1]

T . By definition, the inverse filter w̄ should satisfy

ā(1)(z)w̄(1)(z) + ā(2)(z)w̄(2)(z) = 1. The existence of such an
inverse filter is guaranteed under the condition that the impulse re-
sponses corresponding to the channels, ā(1)(z) and ā(2)(z), do not
share common zeros [9].

With regard to the likelihood function, the first term in (2) can
be discarded because of the noise-free assumption, and thus it can
be written as

L(θ) =
X

t

log p( ¯̄St = xtw̄|Ht; θ).

We adopt w̄ and ht as parameters to be optimized for inverse fil-
ter estimation and take ¯̄st as the objective of the joint optimization
with w̄ according to (6). A certain constraint on w̄ is necessary to
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htUpdate

Convergence
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Initial value

for
st

stst

st

xt

Fig. 3. Processing flow of inverse filter estimation

avoid a self-evident solution w̄ = 0. For this purpose, we introduce
w

(1)
1 = 1 assuming the 1st microphone is physically the closest to

the source location and the gain of the observed signal is appropri-
ately normalized. Then, the following two equations are derived as
those that maximize the likelihood function in terms of ht and w̄,
respectively.

ĥt = arg max
h

p(¯̄st|h; θ) → ht,

ˆ̄w =

»
1

−r−1
2..2M,2..2Mr2..2M,1..1

–
→ w̄,

where r is a square matrix (2M × 2M ) defined as

r =
X

t

xT
t r−1

ht
xt,

and rn1..n2,n3..n4 denotes a submatrix of r ranging from the n1-th
to n2-th rows and from the n3-th to n4-th columns. The likelihood
function can be maximized again up to a stationary point by iter-
atively updating the sequence of the source states and the inverse
filter in turn from certain initial values. Figure 3 summarizes the
processing flow.

It should be noted that the above estimation method can be viewed
as a variation of multi-channel linear prediction (MCLP) [10]. Equa-
tion (6) becomes identical to that of the MCLP when we introduce
an additional constraint w

(2)
1 = 0 and set p( ¯̄St|H; θ) = N (0, σ2

sI).
In other words, the AC codebook allows us to dereverberate speech
signals using the MCLP without whitening them.

3. EXPERIMENT

We conducted two preliminary experiments to confirm the effective-
ness of the dereverberation methods based on the AC codebook. For
this purpose, an AC codebook was generated as in fig. 1 using 5240
word utterances produced by a female speaker (FKM) and found in
the ATR database. The observed signals were synthesized by con-
volving the female utterances with a 2-channel RIR (RT60= 0.5 sec)
measured in a reverberant room. We set the sampling rate at 8 kHz,
K = 9216, L = 5217, M = 4000, N = 64, and Ns = 1024.

3.1. Exp-1: performance of regularized inversion

To examine the effect of regularized inversion described in section 2.2,
white Gaussian noise was also added to the observed reverberant
signals with an average signal-to-noise ratio (SNR) of 10 dB. We
compared the dereverberation performances provided by the Moore-
Penrose inverse, the conventional regularized inverse, and the pro-
posed method, hereafter referred to as MPI, CRI, and PROP1, re-
spectively. As the initial estimate of s̄t for PROP1, we adopted the
signal dereverberated by CRI. The iteration number of PROP1 was
fixed at five. Figure 4 shows spectrograms of speech signals be-
fore and after dereverberation. While MPI seriously amplified the
noise to obscure the speech completely, CRI adequately dereverber-
ated the signal without amplifying the noise. By contrast, PROP1
reduced not only the reverberation but also the noise. Interestingly,
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Fig. 4. Spectrograms of the source signal uttering the Japanese word
“Ba-Ku-Da-i” (top left), the source with reverberation (center left),
the source with reverberation and noise (bottom left), and speech
signals processed by MPI, CRI, and PROP1 (top right, center right,
and bottom right)

PROP1 eliminated all the signal energy in each time region where
the SNR was significantly low. The left panel in fig. 5 depicts the
time patterns of the cepstral distances (CDs) between the source sig-
nal and the dereverberated signals. PROP1 was the best at reducing
the CDs except in the time regions where it eliminated all the signal
energy. These results suggest that PROP1 can effectively recover the
signal quality depending on the time-varying speech characteristics
and SNR.

3.2. Exp-2: performance of inverse filter estimation

We tested the inverse filter estimation method described in section 2.3,
hereafter referred to as PROP2, in terms of its dereverberation qual-
ity. We set the length of the dereverberation filter at 3000 taps in each
channel, which is shorter than that of the RIR, to confirm the robust-
ness of PROP2 with the channel order mismatch. We prepared two
sets of observed signals that were composed of one-word and five-
word sequences, respectively. In the estimation, we also used these
observed signals as the initial estimates of s̄t. The CD between the
source and dereverberated signals after five estimation iterations and
the spectrograms of the dereverberated signals are shown in the right
panel of fig. 5 and the left and right panels of fig. 6, respectively.
They clearly show that PROP2 could recover the signal quality very
well. In particular, the CD obtained with the five-word observation
is almost always below 2 dB. With the one-word observation, the
audible sound quality was also well recovered. Even if large CDs
are observed at around 200 and 800 ms, it did not affect the audible
quality because the signal energy in these regions was sufficiently
small.

4. CONCLUSION

This paper proposed an autocorrelation (AC) codebook as a model
of speech statistics for speech dereverberation. The AC codebook

200 400 600 800
0

2

4

6

8

10

12

Time (ms)

C
D

 (
dB

)

 

 

Observed
CRI
PROP1

200 400 600 800
0

2

4

6

8

10

12

Time (ms)

 

 

Observed
One word
Five words

Fig. 5. Time patterns of cepstral distances (CDs) from the source
signal to the observed and dereverberated signals, including signals
processed by CRI and PROP1 in Exp-1 (left) and those processed by
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Fig. 6. Spectrograms of the dereverberated signals in Exp-2 obtained
based on one-word (left) and five-word (right) observations.

can represent short-time and time-varying speech characteristics pre-
cisely, and thus allows us to formulate speech dereverberation in a
reasonable manner. We formulated two dereverberation approaches,
regularized inversion and inverse filter estimation, using the AC code-
book with the maximum likelihood estimation framework. Prelim-
inary experiments showed that the AC codebook enabled the regu-
larized inversion to reduce both reverberation and noise effectively,
and the inverse filter estimation to achieve precise dereverberation
with only a few seconds observation. Future work will include the
integration of inverse filter estimation and regularized inversion, and
a comprehensive evaluation of the performance of the AC codebook
based speech dereverberation.
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