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ABSTRACT
The challenge of multichannel equalization for audio applications
lies in the physical properties of the underlying multi-input/multi-
output (MIMO) linear time-invariant systems which are generally
non-minimum phase and exhibit extremely long impulse responses,
thereby imposing a considerable computational burden on the equal-
ization task particularly when iterative solutions are sought. In this
paper we propose a computationally efficient non-iterative multi-
channel equalization algorithm. The proposed algorithm is based on
the Fast Fourier Transform (FFT) and allows for faster and consider-
ably more accurate inversion of MIMO systems compared to tradi-
tional deconvolution algorithms and adaptive solutions. We address
the accuracy and limitations of the proposed algorithm and present
simulation results illustrating its performance.

Index Terms— MIMO systems, multichannel equalization, dere-
verberation, audio systems.

1. INTRODUCTION

Multichannel equalization plays an important role in sound repro-
duction systems. It is the central problem in audio applications
which require dereverberation of acoustic sources and cross-talk can-
cellation for soundfield rendering.

The goal of dereverberation is to extract dry audio signals by
post-processing the convolutive mixture of microphone signals in
order to remove the effect of room acoustics. On the other hand,
cross-talk cancellation attempts to pre-process the reverberant mi-
crophone signals so that on playback, the listener perceives an un-
modified stereophonic signal. These techniques aim to compensate
the deficiencies of the transduction chain for the reproduction of a
spatially coherent soundfield [1]. One particular application which
was the main motivation for the work presented in this paper is the
separation of direct and diffuse components of the individual audio
signals for the reconstruction of perceptual soundfield [3, 4]. In ei-
ther case, the underlying mathematical problem to be solved involves
the inversion of an LTI MIMO system. The particular challenge of
this problem for the aforementioned applications is that the corre-
sponding MIMO systems have non-minimum phase characteristics
and feature very long impulse responses.

The non-blind and semi-blind iterative source separation schemes
studied previously [1, 2] require very long training sequences for
convergence of the inverse filters and therefore place a considerable
computational burden on the system. A non-iterative dereverbera-
tion algorithm was presented in [5]. This algorithm was however re-
stricted to one audio source. In this paper, we propose a non-iterative
FFT-based solution to multichannel equalization which is able to in-
vert MIMO systems corresponding to multiple sound sources. The

inversion of acoustics is performed in the frequency domain under
the assumption that the impulse responses of the performance venue
between the sound sources and the microphones are known. This
is a minor restriction since the impulse responses can be measured
[6, 7, 8]. The proposed method is several orders of magnitude faster
and more precise than the conventional iterative solutions. For sim-
plicity, we restrict our discussion to a post-equalization structure for
dereverberation of audio signals as shown in Figure 1.

In Section 2, we set a mathematical formulation of the problem
and present the proposed solution. The simulations and results of
error performance of the equalizer are reported in Section 3. Finally,
Section 4 draws some conclusions.

Fig. 1. Inversion of a MIMO system H(z) by an equalizer G(z).

2. MULTICHANNEL EQUALIZATION USING FFT

Consider L instruments playing in an acoustic space andM micro-
phones recording the soundfield . The signal captured by mth mi-
crophone is given by

Ym(z) =

L∑
l=1

Hlm(z)Xl(z) (1)

where Xl(z) is the signal of the lth instrument and Hlm(z) is the
transfer function of the space between lth instrument and mth mi-
crophone. The problem addressed in this paper is to reconstruct
(dereverberate) signalsX1(z), . . . , XL(z) from their convolutive mix-
tures Y1(z), . . . , YM (z). In matrix notation, the microphone signals
are given by

Y(z) = H(z)X(z)

where

Y(z) = [Y1(z), . . . , YM (z)]T , X(z) = [X1(z), . . . , XL(z)]T ,
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and

H(z) =

⎡
⎣

H11(z) . . . HL1(z)
...

. . .
...

H1M (z) . . . HLM (z)

⎤
⎦ . (2)

The dereverberation requires finding a matrix of equalization filters,

G(z) =

⎡
⎣

G11(z) . . . G1M (z)
...

. . .
...

GL1(z) . . . GLM (z)

⎤
⎦ ,

such thatM(z) = G(z)H(z), the transfer function of the cascade
of the acoustic space and the equalizerG(z), is a pure delay,

M(z) = G(z)H(z) ≡ z−ΔILxL(z) . (3)

A necessary and sufficient condition for the existence of such a ma-
trix of stable filters is that H(z) is of full-rank everywhere on the
unit circle. The minimum norm solution for G(z) is then provided
by the left pseudo-inverse of H(z),

G(z) =
(
HT (z−1)H(z)

)−1
HT (z−1) (4)

Exact computation of the pseudoinverse ofH(z) is numerically pro-
hibitive, since its entries are polynomials of very high orders, e.g.
around 44, 000 for 1s reverberation time at 44.1kHz sampling. Fur-
thermore, G(z) will be non-causal and will result in IIR filters if∣∣HT (z−1)H(z)

∣∣ is not a pure delay. Below, we propose a numer-
ically efficient algorithm to find an FIR approximation of the left
pseudoinverse ofH(z).

Let

B(z) =

⎡
⎣

B11(z) . . . B1L(z)
...

. . .
...

BL1(z) . . . BLL(z)

⎤
⎦ = HT (z−1)H(z) . (5)

Then

G(z) = B−1(z)HT (z−1) (6)

and

B−1(z) =

⎡
⎣

CofB11(z) . . . CofB1L(z)
...

. . .
...

CofBL1(z) . . . CofBLL(z)

⎤
⎦

T

D(z)
(7)

where

D(z) =
∣∣B(z)

∣∣ = Determinant of B(z)

and

CofBij(z) = (−1)i+j
∣∣Bkn(z)

∣∣, k �= i, n �= j

Since CofBij(z) andD(z) are polynomials in z, it should be noted
that if we try to invert the matrix B(z) directly, the inverse matrix
B−1(z) will result in IIR filters. This, of course, is not an ideal so-
lution. However, we can use this direct matrix inversion approach to
approximate the inverse IIR filters with FIR filters. The FIR approx-
imation to B−1(z) are obtained by dividing the N -point DFT of the
corresponding cofactors, CofBij(z), i = 1, . . . , L, j = 1, . . . , L,
by the N -point DFT ofD(z).

B−1(ej
2π
N

k) =

⎡
⎢⎣

CofB11(e
j 2π
N

k) . . . CofB1L(ej
2π
N

k)
...

. . .
...

CofBL1(e
j 2π
N

k) . . . CofBLL(ej
2π
N

k)

⎤
⎥⎦

T

D(ej
2π
N

k)
(8)

k = 0, 1, . . . , N − 1. Then, the N -point inverse discrete Fourier
transform of (8) results in an FIR approximation of the matrixB−1(z).
Finally, the equalizer G(z) can be obtained from (6). It should be
noted that the size of the FFT (N) must be greater than or equal to
the length ofD(z). The minimum size of the FFT, therefore, is given
by

FFTSizeMin = Ld = 2L(Lh − 1) + 1 (9)

whereLh is the length of room impulse response andLd is the length
of D(z). Accordingly, the minimum length that the inverse filters
can have is given by

Lg,Min = Ld + Lh − 1 = 2L(Lh − 1) + Lh . (10)

This algorithm computes the coefficients of IIR filters Glm(z) by
finding the inverse Fourier transform using finitely many transform
samples. This discretization of the Fourier transform causes time-
aliasing of B−1(z) which is reduced as the size of FFT is increased.
The impact of the size of the FFT on the relative error of the equal-
ized signals is reported in the next section.

3. DESIGN EVALUATION AND RESULTS

Having previously described the mathematical design, this section
presents the evaluation of the equalization algorithm described in
Section 2. For comparison, a semi-blind adaptive multichannel equal-
ization algorithm presented in [2] was also implemented. This method
uses a multichannel normalized least mean square (M-NLMS) al-
gorithm for the gradient estimation and the update of the adaptive
inverse filters.

A quantitative performance measure used to evaluate these algo-
rithms is the Relative Error given by

RelativeError =
MSE

EnergyAverage
=

∑
n

∣∣x[n]− xrec[n]
∣∣2

∑
n

∣∣x[n]
∣∣2 .

(11)
Impulse responses, Hkm(z), were generated for hypothetical rect-
angular auditoria using the method of images described in [9]. Since
the adaptive equalizer requires very long time for training, we use
relatively short impulse responses in the numerical experiments so
as to compare both algorithms. However, the algorithm proposed in
this paper can effectively equalize longer impulse responses as well.

Here we present results to establish post-equalization of audio
signals using both algorithms for the following two cases: L = 2,
M = 5 andL = 3,M = 5. Dry test signals used were: jazz trumpet
and saxophone in the L = 2 case, and electric jazz guitar, jazz trum-
pet, and saxophone in the L = 3 case. All test signals were 23s high
quality audio files, sampled at 44.1kHz, and recorded with a close
microphone technique to minimize early reflections and reverbera-
tion. The quantitative results and impulse responses of the equalized
system for the two scenarios are presented in Tables 1−4 and Figure
2, respectively. In both cases the size of the FFT used in the pro-
posed algorithm was set to be twice the minimum size given in (9).
In the case of two sources, the adaptive algorithm was trained using
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a sequence of 400, 000 samples, while in the case of three sources,
the training sequence was 600, 000 samples long. We can observe
from Tables 1 − 4 that the proposed FFT-based algorithms attains a
40 − 50dB higher accuracy than the adaptive algorithm in the case
of two sound sources, and over 60dB higher accuracy in the case of
three sources. This improvement is paid by considerably longer fil-
ters of the FFT-based equalizer compared to the adaptive algorithm.
The number of coefficients in the filters of the adaptive equalizer
was set to be equal to length of the room impulse response, since
we found that longer or shorter filters were yielding less accurate
results. In terms of numerical complexity, the adaptive algorithm
requires long training sequences for the adaptive filters to converge
and is, therefore, computationally considerably less efficient than the
proposed method.

Table 1. Quantitative results of multichannel equalization using the
adaptive equalizer in the case of L = 2 source signals and M =
5 microphones. Each column corresponds to an individual source
signal. Lg - the length of the equalizer filters is set to be equal to Lh

- the length of the room impulse responses.

Lh − 1700
Training Sequence 400000 samples

Lg 1700
EnergyAverage −33.8dB −26.8dB

MSE −47.5dB −43.9dB
Relative Error −13.7dB −17.1dB

Table 2. Quantitative results of multichannel equalization using the
FFT-based equalizer in the case of L = 2 source signals and M =
5 microphones. Each column corresponds to an individual source
signal. Lg - the length of the equalizer filters. Lh - the length of the
room impulse responses.

Lh 1700
FFTSize 2 ∗ FFTSizeMin

Lg 15302
EnergyAverage −33.8dB −26.8dB

MSE −98.2dB −82.1dB
Relative Error −64.4dB −55.3dB

Table 3. Quantitative results of multichannel equalization using the
adaptive equalizer in the case of L = 3 source signals and M =
5 microphones. Each column corresponds to an individual source
signal. Lg - the length of the equalizer filters is set to be equal to Lh

- the length of the room impulse responses.

Lh 1700

Training Sequence 600000 samples
Lg 1700

EnergyAverage −28.2dB −33.8dB −26.8dB
MSE −41.2dB −45.7dB −36.9dB

Relative Error −13dB −11.9dB −10.1dB

Table 4. Quantitative results of multichannel equalization using the
FFT-based equalizer in the case of L = 3 source signals and M =
5 microphones. Each column corresponds to an individual source
signal. Lg - the length of the equalizer filters, Lh - the length of the
room impulse responses.

Lh 1700

FFTSize 2 ∗ FFTSizeMin

Lg 22102
EnergyAverage −28.2dB −33.8dB −26.8dB

MSE −111.9dB −109.1dB −98.8dB
Relative Error −83.7dB −75.3dB −72dB

Table 5. FFTSize vs. RelativeError for the case of L = 2
instruments and M = 5 microphones. Each column corresponds to
an individual instrument.

FFTSize RelativeError
2 ∗ FFTSizeMin −64.4dB −55.3dB
4 ∗ FFTSizeMin −96.9dB −89.1dB
8 ∗ FFTSizeMin −130.2dB −123.1dB
10 ∗ FFTSizeMin −176.5dB −170.1dB

Impulse responses of the equalized system for the case of L = 3
instruments and equalization using the adaptive algorithm and the
algorithm proposed here are shown in Figure 2. The maximal error
of the FFT-based algorithm is over 60dB below the maximal error
of the adaptive algorithm. In Figure 2(b), one can observe error
“bumps” at the tails of impulse responses of the equalized system
in the case of the FFT-based algorithm. These are a result of the
time aliasing due to the discretization of the Fourier transform, as
discussed in the previous section. Nevertheless, even at these bumps
the error is still around −100dB.

Finally we investigated the impact of the size of the FFT on the
equalization accuracy. Tables 5 − 6 illustrate the effect of the FFT
size on the relative error of dereverberation for the same mixtures of
L = 2 and L = 3 signals, respectively, which were used for experi-
ments shown in Tables 2 and Table 4. An increase in the size of the
FFT reduces the time aliasing of the inverse filters, hence decreasing
the relative error accordingly. Results shown in Tables 5 − 6 sug-
gest that in this way the error could be made arbitrarily small. But
increasing the size of the FFT in turn increases the length of the in-
verse filters. Therefore, the size of the FFT should be kept moderate
enough such that the inverse filters are not very long and the rela-
tive error is small enough so that the difference between the original
dry source signals and the reconstructed signals is below the level of
human hearing.

The FFT-based equalizer has its limitations. If the condition
L < M is not satisfied, D(z) is very close to zero because the ma-
trix H(z) is not well-conditioned at all frequencies. Hence, accurate
inversion of the system could not be achieved regardless of the FFT
size. Therefore, a restriction of this algorithm is that the number of
sound sources is less than the number of microphones capturing the
auditory scene.
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(a) (b)

Fig. 2. Impulse response of the equalized system in the case of L = 3 sound sources and M = 5 microphones. (a) Adaptive equalizer (b)
FFT-based equalizer.

Table 6. FFTSize vs. RelativeError for the case of L = 3
instruments and M = 5 microphones. Each column corresponds to
an individual instrument.

FFTSize RelativeError
2 ∗ FFTSizeMin −83.7dB −75.3dB −72dB
4 ∗ FFTSizeMin −122.1dB −121.3dB −119.9dB
8 ∗ FFTSizeMin −180.9dB −179.8dB −170.8dB
10 ∗ FFTSizeMin −227.5dB −220.9dB −212.3dB

4. CONCLUSION

A fast FFT-based multichannel equalization algorithm for audio ap-
plications has been proposed which enables the inversion of long
multiple acoustic impulse responses. The performance of the al-
gorithm has been evaluated in numerical experiments. It is impor-
tant to emphasize that this algorithm is effective for any number of
sound sources provided the number of microphones is greater than
the number of sound sources in the performance venue. A draw-
back of this approach is that the inverse filters are quite long. On the
other hand, this scheme provides significantly higher accuracy and is
computationally much more efficient than the iterative equalization
algorithms [1, 2].
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