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ABSTRACT

Crosstalk cancellation is a well-known technique to generate
virtual 3D sound via loudspeakers. Usually, headphones are
used to playback audio material, which has been ltered with
HRTFs. Audio playback in a reverberant room using loud-
speakers and crosstalk cancellation is our intended applica-
tion. This raises the need for a robust design, since listeners
might slightly move their heads during a listening session.
The novel design is based on a known least squares crosstalk
canceller design technique, but with added robustness. The
robustness is achieved with the help of assumed stochastic
perturbation systems, which lie in parallel to the actual prop-
agation impulse responses, during the design process.

Index Terms— Crosstalk, Deconvolution, Equalizers,
Robustness, Spatial lters

1. INTRODUCTION

Crosstalk cancellation for acoustic systems is a traditional
task in signal processing. Early approaches assume symmet-
ric propagation paths and usually aim at the equalization of
head related transfer functions (HRTFs) and the cancellation
of crosstalk paths [1]. Subsequent designs were carried out
in the DFT-domain. Signal propagation from two loudspeak-
ers to two microphones is described by 2×2-matrices – each
entry is a transfer function. Crosstalk cancellation could be
separated into two stages: rst, the crosstalk paths are per-
fectly cancelled by designing a 2×2-matrix, which contains
the adjugate, i. e. the inverse multiplied with the determinant,
of the 2×2-propagation path matrix. However, the remaining
task of equalizing the determinant is very demanding, since
it contains the difference of two pairs of convoluted impulse
responses [2, 3].
Nelson et al. [4] proposed a least squares crosstalk can-

celler to achieve both equalization and crosstalk cancellation
in one step. This technique has been extended by Ward [5],
who made a common design for more than one head position
simultaneously, which resulted in good spatial robustness. In

∗Both authors have performed the present work at the Signal Processing
Group, University of Oldenburg, Germany.

this paper we try to achieve a similar goal on the basis of sta-
tistical knowledge of acoustic transfer functions [6].
The paper is organized as follows: Section 2 contains a

generalized derivation of the least squares crosstalk canceller
according to Nelson et al. andWard, respectively. Section 3 il-
lustrates the novel, spatially robust design. Simulation results
are given in Section 4, and Section 5 concludes the paper.

Notation Vectors (lowercase) and matrices (uppercase) are
printed in boldface. The superscripts T and ∗ denote trans-
position and complex conjugation, respectively. The asterisk
∗ denotes convolution. The operator diag{·} turns a vector
into a diagonal matrix and ‖ · ‖ returns the �2-norm. Given a
vector c of length Lc, the operator convmtx(c, Lh) generates
a convolution matrix of size (Lh+Lc−1)×Lh.

2. GENERALIZED LEAST-SQUARES CROSSTALK
CANCELLER

We investigate a 2×2-crosstalk canceller as shown in Fig. 1.
The responses hil[n] contain the crosstalk canceller coef -
cients, cil[n] are responses from the loudspeakers to the ears
and pil[n] are stochastic perturbations systems, which are
added to cil[n] to simulate estimation errors. di[n] are desired
responses.
We search for a least squares solution of a difference sys-

tem est in terms of the equalizer coef cients, which are all
collected into a stacked vector hst:

est = C̃sthst − dst

= (Cst + Pst)hst − dst (1)

using

hst =
[
h

T
11,h

T
12,h

T
21,h

T
22

]T
, (2)

hil = [hil[0], . . . , hil[Lh − 1]]
T

, (3)

Cst =

[
C 0

0 C

]
, (4)

C =

[
C11 C12

C21 C22

]
, (5)
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Fig. 1. 2×2-setup of a crosstalk canceller. For illustration
purposes the generation of the error signals is also shown.

Cil = convmtx
(
[cil[0], . . . , cil[Lc − 1]]

T , Lh

)
, (6)

Pst =

[
P 0

0 P

]
, (7)

P =

[
P11 P12

P21 P22

]
, (8)

Pil = convmtx
(
[pil[0], . . . , pil[Lc − 1]]

T , Lh

)
, (9)

dst =
[
d

T
1 ,0T ,0T ,dT

2

]T (10)

and

di = (11)⎡
⎢⎣0, . . . , 0︸ ︷︷ ︸

ni

, di[0], . . . , di[LBP − 1], 0, . . . , 0︸ ︷︷ ︸
Lh+Lc−1−Ld−ni

⎤
⎥⎦

T

.

The aim of the design is to minimize the mean squared error
E
{
‖est‖

2
}
. The expectation operator is used to account for

the stochastic perturbations described by P. This way of ex-
pressing an estimation uncertainty had been used in [7] during
the design of channel-shortening lters.
Generalization can be obtained by weighting of each de-

sired path:

est = W ((Cst + Pst)hst − dst) (12)

with

W = diag
{[

w
T
11,w

T
21,w

T
12,w

T
22

]}
. (13)

Vectors wil represent individual weights of cancellers and
equalized paths, respectively. In this paper, each vector wil

only contains constant elements wil. Starting the derivation
of the generalized least squares crosstalk canceller we want
to minimize

E
{
‖est‖

2
}

= E
{
((Cst + Pst)hst − dst)

T

W
T
W ((Cst + Pst)hst − dst)

}
. (14)

For further conversions we assume that all stochastic pertur-
bations are zero-mean:

E{pil[n]} = 0. (15)

The derivative of E
{
‖est‖

2
}
with respect to hst amounts to:

∂E
{
‖est‖

2
}

∂hst

(16)

= 2CT
stW

T
WCsthst + 2E

{
P

T
stW

T
WPst

}
hst

− 2CT
stW

T
Wdst.

Setting this expression to zero and solving for hst yields:

hst =
(
C

T
stW

T
WCst + E

{
P

T
stW

T
WPst

})
−1

C
T
stW

T
Wdst. (17)

Referring to equations (4) and (7), the rst and the second
half of vector hst can be calculated separately. The required
matrix inversion does not have to be carried out at once – the
inversion of the upper left and lower right quadrants suf ces.
Taking a closer look at E

{
P

T
stW

T
WPst

}
, we see that, in

our case, eachwil, which makes up the diagonal matrixW, is
constant. Therefore, the weights can be varied for emphasized
optimization of ipsilateral or contralateral paths.

3. INCORPORATING SPATIAL ROBUSTNESS

In the following, we want to choose E
{
P

T
stW

T
WPst

}
in

a way to increase the spatial robustness of the investigated
LS-crosstalk canceller. We refer to a statistical point of view,
which was treated by Radlović et al. [6]. If the following con-
ditions are met, the transfer function between a loudspeaker
and a microphone is a stochastic one:

• The dimensions of the room must be large compared
the wavelengths of interest. This is true especially for
speech signals.

• Statistical assumptions can be met for frequencies
above the Schroeder large-room frequency

fSL = 2000

√
τ60

V
Hz. (18)

Our room possesses a Schroeder large-room frequency
of 215Hz (for dimensions, please refer to Section 4).
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• All loudspeakers and microphones should have a dis-
tance of at least half a wavelength to adjacent walls.

Given these assumptions Radlović et al. de ned a frequency
dependent distance measure of

Qil(Ω) = E

{∣∣∣C̃il(Ω)Hil(Ω)− 1
∣∣∣2} . (19)

With C̃il(Ω)=Cil(Ω)+Pil(Ω) and an assumed perfect equal-
izer Hil(Ω) = 1/Cil(Ω) we want to calculate E

{
|Pil(Ω)|2

}
in order to insert its time domain equivalent into equation
(17). Ω denotes the angular frequency. The distance measure
amounts to

Qil(Ω) ∼= 2− 2
sin (ΩfsR/c)

ΩfsR/c
, (20)

in the far eld in reverberant environments [6]. fs represents
the sampling frequency in Hz, R is the deviation of the mi-
crophone from its assumed position in m, and c is the sound-
propagation velocity (340 m/s).

Qil(Ω) = E

{∣∣∣∣Cil(Ω) + Pil(Ω)

Cil(Ω)
− 1

∣∣∣∣2
}

=
|Cil(Ω)|2 + E

{
|Pil(Ω)|2

}
|Cil(Ω)|2

+ 1

− 2�

{
Cil(Ω) + E{Pil(Ω)}

Cil(Ω)

}

=
|Cil(Ω)|2 + E

{
|Pil(Ω)|2

}
|Cil(Ω)|2

− 1

E
{
|Pil(Ω)|2

}
= |Cil(Ω)|2

(
2− 2

sin (ΩfsR/c)

ΩfsR/c

)
. (21)

In order to get an equivalent of E
{
|Pil(Ω)|2

}
in the time do-

main, we rst sampleQil(Ω) atK discrete frequenciesΩk. A
succeeding inverse discrete Fourier transform (IDFT) delivers
the discrete series qil[n], which in turn is needed to receive

rpp,il[n] = rcc,il[n] ∗ qil[n] (22)
= (cil[n] ∗ cil[−n]) ∗ qil[n]

←→ E
{
|Pil[Ωk]|2

}
.

For equation (17) we need to calculate E
{
P

T
stW

T
WPst

}
.

As a simpli cation we have considered the four partitions of
W to be identity matrices being weighted by a scalar. There-
fore, the two diagonal partitions of E

{
P

T
stW

T
WPst

}
are

almost identical except for their different weights (see equa-
tion (7)). In the following, let us take a closer look at the upper
left partition,

[
E
{
P

T
stW

T
WPst

}]
11
. It possesses four quad-

rants, too. The upper left one is a symmetric Toeplitz matrix
of size Lh × Lh, made up by the vector⎡

⎢⎣ w11rpp,11[0] + w21rpp,21[0]
...

w11rpp,11[Lh − 1] + w21rpp,21[Lh − 1]

⎤
⎥⎦

and the lower right one is symmetric Toeplitz, as well. It is
de ned by vector⎡

⎢⎣ w11rpp,12[0] + w21rpp,22[0]
...

w11rpp,12[Lh − 1] + w21rpp,22[Lh − 1]

⎤
⎥⎦ .

The two off-diagonal quadrants of
[
E
{
P

T
stW

T
WPst

}]
11

contain zeros for the following reason: the off-diagonal quad-
rants only contain cross spectral densities of the stochastic
perturbation like E{P ∗

11[Ωk]P12[Ωk]}. Perturbations of dif-
ferent acoustic paths are assumed to be uncorrelated.
Accordingly, the diagonal quadrants of[

E
{
P

T
stW

T
WPst

}]
22
are symmetric Toeplitz and made up

by ⎡
⎢⎣ w12rpp,11[0] + w22rpp,21[0]

...
w12rpp,11[Lh − 1] + w22rpp,21[Lh − 1]

⎤
⎥⎦

and ⎡
⎢⎣ w12rpp,12[0] + w22rpp,22[0]

...
w12rpp,12[Lh − 1] + w22rpp,22[Lh − 1]

⎤
⎥⎦ ,

respectively. The two off-diagonal partitions of
E
{
P

T
stW

T
WPst

}
contain only zeros. Finally, we get

E
{
P

T
stW

T
WPst

}
with 16 quadratic, uniformly sized

partitions, and only those on the diagonal are non-zero.

4. SIMULATION RESULTS

For the following simulations we have measured impulse re-
sponses in an of ce of size 2.63 m × 3.10 m × 4.22 m
(height×width× length) with a reverberation time of 400ms.
Sources were two Genelec 8020 loudspeakers. Two in-ear mi-
crophoneswere placed into the ears of a 4128C head and torso
simulator by Brüel&Kjær, “ear types” 4158C and 4159C.
Both speakers had a distance of 1.7m to the back wall and
1.0m to each other. The torso was located with a distance of
1.0m to the line between the loudspeakers, i. e. we had a dis-
tance of 1.41m from each loudspeaker to the torso. Measure-
ments using maximum-length sequences have been carried
out at 44.1 kHz sampling frequency; all impulse responses
have been resampled to fs =12kHz.
We used Lc = Lp = 1000 samples for the design of a

Lh = 1000 crosstalk canceller. Evaluation of the designed
crosstalk canceller was carried out with longer impulse re-
sponses (Lc = 1800). The delay in front of the desired im-
pulse responses d1[n] and d2[n] was set to n1 = n2 = 150.
Both desired impulse responses were chosen to be bandpass
lters. We took a recursive Butterworth design in order to
achieve a causal character for d1[n] and d2[n], respectively.
At an order of 10, cutoff frequencies were located at 200Hz
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and 5.5kHz. The in nite impulse response was truncated to a
length of LBP =400. All wil were set to 0.5.
Fig. 2 shows measured magnitude transfer functions

(black) and processed magnitude transfer functions (gray).
They describe the propagation from the sources s1[n] and
s2[n], respectively, to the “left ear”, i. e. to signal y1[n]. We
can observe the impact of equalization in the upper left plot
(transfer function of ipsilateral path). The lower left plot
shows the equalization performance of a spatially robust de-
sign with an assumed microphone deviation of R =2cm (ip-
silateral path). The equalizer causes a slight lowpass charac-
ter. The crosstalk cancellation performance of both designs is
rather equal (contralateral path, right plots).
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Fig. 2. Magnitude transfer functions (black) and processed
magnitude transfer functions (gray). The upper left plot
shows the ipsilateral path to the left ear and the upper right
one the contralateral path to the left ear. For the upper plots
we used a non-robust design and a robust design for the lower
plots (again, ipsilateral path to the left ear on the lower left
and contralateral path to the left ear on the lower right plot).
The room impulse responses were not changed.

Fig. 3 shows results for the previously designed crosstalk
cancellation lters being applied to modi ed measured im-
pulse responses. Here, the advantage of the robust design be-
comes evident. While hardly any crosstalk cancellation can
be achieved anymore, the robust design (lower plots) does not
produce any additional spectral peaks. The non-robust de-
sign produces peaks for both the ipsi- and the contralateral
paths. Note that crosstalk cancellation performance in such
an echoic room cannot be compared to known investigations,
where only HRTFs are addressed.

5. CONCLUSIONS

In this paper we have proposed a novel way to design spatially
robust crosstalk cancellation lters through an extension of a
known least squares design. An additional advantage is the
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Fig. 3. Same con guration as Fig. 2 except for the torso,
which was moved towards the loudspeakers by 2cm after the
crosstalk-canceller design.

possibility to set a parameter for the expected deviation from
the “sweet spot”. Simulation results on the basis of measured
impulse responses from a reverberant of ce room show the
robustness of the extended least squares design.
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