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ABSTRACT

Binaural displays for immersive listening must model rever-

berant acoustic environments, multiple sound sources, and

compensate for head motion. Many displays accomplish this

by convolving collections of spatially distributed sources with

head-related transfer functions (HRTFs). In the absence of re-

flections, the computational load scales linearly with the num-

ber of sources; however, when reflections are present, the load

scales exponentially such that the binaural display reaches the

limit of available processing power for even relatively sparse

acoustic scenes. We propose a method that significantly eases

this exponential growth by formulating the HRTF filter array

as a MIMO state-space system. Two MIMO architectures are

explored; the relative merits of each are found to depend on

the specific application. Hankel-optimal methods are found

to be a good choice for model reduction, and yield displays

with superior approximation quality relative to conventional

FIR filter arrays of equal computational complexity.

Index Terms— Acoustic signal processing, headphones,

MIMO systems, reduced order systems, Hankel matrices

1. INTRODUCTION

In the ideal case, an acoustic source is a motionless point in an

anechoic environment which lies in the far field of the listener.

In such cases, the relationship between the source signal and

the signals at the listener’s ears is completely determined by a

pair of head related transfer functions (HRTFs). Such transfer

functions can be implemented using appropriately measured

head related impulse responses (HRIRs), which, empirically,

require approximately 200 taps at a cost of 17.6 MIPS for

a sampling rate of 44.1 kHz. Because this is a substantial

computational load, considerable effort has been made to find

low-order approximations to measured HRIRs [1, 2]. In the

more practical case where the environment is reverberant [3]

and spatially-extended sources [4] undergo motion relative to

the listener [5], the savings gained by such low-order approx-

imations is rapidly spent on the exponential rise in computa-

tional cost when each source or reflection is convolved with
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direction-appropriate HRIRs. The challenge in binaural dis-
plays concerns the best system architecture to move from the

synthesis of ideal cases to realistic acoustic scenes.

The present work explores reduced-order multiple-input
multiple-output (MIMO) state-space systems in which one

or more monaural signals are filtered with numerous HRTFs

simultaneously. We argue that MIMO state-space architec-

tures offer substantial computational improvements relative to

the standard FIR filter arrays. Section 2 describes two state-

space architectures and two order-reduction techniques for the

HRTF filter array problem. For one architecture, the interau-
ral time difference (ITD) is found to degrade the approxima-

tion, and a hybrid method is proposed to mediate this prob-

lem. System performance is characterized in the Section 3.

1.1. Background

HRTFs measured at different directions are correlated [2].

Numerous studies have found that collections of HRTFs can

be reasonably represented in low-dimensional spaces. How-

ever, such representations do not yield low cost filters for in-

dividual HRTFs. A system that models HRTFs at many di-

rections simultaneously may be able to utilize the correlation

properties of HRTFs to reduce the net cost of the system.

Two recent studies propose state-space systems that model

HRTFs at multiple directions. In [6] MISO systems are de-

signed that model multiple HRTFs for each ear. HRTF corre-

lation is not utilized in this work however, as separate systems

are designed for each HRTF individually, and then merged

into one large system. In contrast, [7] considers a MIMO

state-space design that directly models many HRTFs. Both

studies employed a balanced model truncation (BMT) tech-

nique to design low-order systems [8], and found that with

sufficiently high order, state-space systems well approximated

the measured HRTFs. However, neither study considered the

computational advantages of state-space implementations.

2. METHODS

Consider a discrete-time MIMO state-space system,

x[n+1] = Ax[n] + Bu[n]
y[n] = Cx[n] (1)
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where x[n] is the state vector of size N , u[n] is the input

vector of size P , and y[n] is the output vector of size M . The

matrix impulse response of this system is

h[n] =

⎡
⎢⎣

h11[n] . . . h1P [n]
...

. . .
...

hM1[n] . . . hMP [n]

⎤
⎥⎦

=
{

CAn−1B n > 0
0 n ≤ 0

(2)

For state-space systems of this form, the time-domain behav-

ior of the system can be represented by the Hankel matrix

H =

⎡
⎢⎢⎢⎣

h[1] h[2] h[3] . . .
h[2] h[3]
h[3]

...
...

. . .

⎤
⎥⎥⎥⎦ (3)

We seek matrices
(
A,B,C

)
such that the matrix impulse

response is a convenient arrangement of the HRIRs. Below

we describe two arrangements of the HRIRs in the matrix im-

pulse response.

2.1. State-space architectures

Let hL
d [n] and hR

d [n] be the HRIRs for the left and right ears

for direction d. For a binaural display that filters a source

signal at D directions simultaneously, there are two obvious

choices of system architecture for the 2D transfer functions.

The state-space system can be implemented using either a

SIMO architecture with one input, 2D outputs and matrix im-

pulse response

h[n] =
[

hL
1 [n] hR

1 [n] hL
2 [n] hR

2 [n] . . . hR
D[n]

]T
(4)

or a MIMO architecture with D inputs, 2 outputs and matrix

impulse response

h[n] =
[

hL
1 [n] hL

2 [n] . . . hL
D[n]

hR
1 [n] hR

2 [n] . . . hR
D[n]

]
(5)

The two architectures have relative advantages and disad-

vantages. Both architectures can readily accommodate acous-

tic reflections and motion by placing a scale-and-delay filter

array either after the state-space system for the SIMO archi-

tecture, or before the state-space system for the MIMO ar-

chitecture. The SIMO architecture has the disadvantage that

multiple sources at different locations cannot be presented si-

multaneously. However, the MIMO architecture has the dis-

advantage that the ITD must be included in the state-space

system, which decorrelates h[n]. For the SIMO architecture,

the ITD can be implemented externally.
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Fig. 1. System order as a function of D for four systems (FIR,

SIMO, MIMO, and Hybrid MIMO) with cost C = 4000, and

one system (FIR×2) with cost C = 8000.

2.2. Model-order reduction

Using, for example, the controller canonical form, construc-

tion of state-space systems that implement the measured HRIRs

exactly is straightforward. Such state-space systems are high

order and far more computationally expensive than conven-

tional FIR filter arrays. Accordingly, we consider two popu-

lar techniques to reduce the system order: BMT and Hankel-
norm optimal approximation (HOA) [9]. We find that sys-

tems with as few as N � 20 states can reasonably approx-

imate measured HRTFs, even for systems with many direc-

tions, D�100.

BMT technique. For a given set of D directions, the HRIRs

are arranged into either a SIMO or MIMO matrix impulse re-

sponse, with an extra zero prepended to each HRIR, as the

state-space system in (1) has no feed-through term. For MIMO

systems the ITD is included, but is removed for the SIMO sys-

tems. Using BMT, an order N system can be designed by: 1.

constructing the Hankel matrix H, 2. computing the SVD of

H = UΣV∗, 3. conformally partitioning
(
U,Σ,V

)
along

the N th row of Σ, and 4. constructing
(
Â, B̂, Ĉ

)
from the

partitioned SVD [8].

Metric for determining optimality. While the BMT method

of model reduction is convenient, it is not optimal in any

specific sense. One metric for which optimal solutions are

known for MIMO systems is the Hankel-norm. Let (σ1 ≥ σ2

≥ σ3 · · · ) be the singular values of H, the main diagonal of

Σ. The largest singular value, σ1, is known as the Hankel-

norm of the system
(
A,B,C

)
. For low-order approximation(

Â, B̂, Ĉ
)

the Hankel error of the system is σ1

(
H − Ĥ

)
,

where Ĥ is the Hankel matrix of the low-order system. Inter-

preting the Hankel error is facilitated by comparing it to the

L∞ spectral error, which is common in acoustic applications.

The Hankel error is a lower bound for the L∞ spectral error

σ1

(
H− Ĥ

) ≤ max
ω

σ1

(
H(ω)− Ĥ(ω)

)
(6)

where H(ω) and Ĥ(ω) are the measured and approximated

matrix frequency responses, respectively, and have the same

dimensions as h[n]. For state-space systems, the Hankel error

is often found to be a tight lower bound.
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Fig. 2. L∞ and Hankel error for four SIMO systems (top

panel) and four MIMO systems (bottom panel). The L∞ error

is shown by blacks lines, and the Hankel error by gray lines.

HOA technique. The HOA method is somewhat involved,

and described in [10]. An order N system designed using

HOA minimizes the Hankel error, which can be shown to

equal the (N+1)th singular value of the original system,

σ1

(
H− Ĥ

)
= σN+1

(
H
)

(7)

2.3. Hybrid MIMO system

BMT and HOA excel at approximating systems of transfer

functions with similar phase behavior, such as HRTFs, if the

linear-phase term of the contralateral HRTFs is removed [6].

We have confirmed that including the ITD in h[n] increases

the singular values of H and degrades the approximation. In

particular, the contralateral impulse responses are ‘smeared,’

such that there is no longer a clear ITD. For orders N < 50,

this phase distortion is audible for directions with large ITD.

To address the problems associated with the contralateral

HRTFs, we propose a hybrid MIMO system that uses a state-

space system for the HRTFs with little or no time delay, and

FIR filters for the HRTFs with large delay. The design pro-

cedure is similar to that described above, except the HRIRs

with large delay (> 300μs) are zeroed-out for the design of

the state-space system, and FIR filters are connected between

the corresponding input/output pairs. The FIR and state-space

system orders are chosen such that the FIR filters account

for no more than a third of the total computational cost. In

this way, the desired phase response is preserved even for

small N .

3. PERFORMANCE CHARACTERIZATION

Truncated minimum-phase FIR filters, as used in many con-

temporary displays, provide a baseline for comparison with
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Fig. 3. Average ‘perceptual’ RMSE for SIMO (top panel) and

MIMO (bottom panel) architectures.

the state-space systems. Performance is presented as a func-

tion of D, the number of directions, for a fixed computational

cost. We define the computational cost as the total number

of multiplies per sample period, as used in [1, 4]. FIR filter

arrays and state-space systems are designed from an HRTF

dataset measured from 8 listeners at 253 spatial directions [2].

The measured HRIRs have length 256 at fs = 44.1kHz. For

every system designed, D of the 253 directions are chosen

such that the density around the listener is approximately uni-

form. For 1 ≤ D ≤ 110, separate systems are designed for

each listener, and results are averaged across listeners.

An order N FIR filter array with P inputs and M outputs

requires C = PM(N +1) multiples per sample period. Any

MIMO state-space system of the form (1) can be converted

to Schur form, in which case the A matrix is block triangular

and the computational cost of the system is C = N 2/2+(P+
M+1)N . Fig. 1 shows the filter order of the four systems

discussed above for equal cost. Filter order N is chosen such

that the total cost of the system is C ≤ 4000. C = 4000 is

approximately equal to the cost of implementing eight full-

order binaural HRIRs. This cost bound applies to all results

presented below, unless otherwise noted. To better gauge the

relative performance of the state-space systems, an FIR filter

array of twice the computational cost is also shown.

We first consider the approximation quality in terms of

the L∞ and Hankel errors, as described in § 2.2. Fig. 2 shows

these two errors for four SIMO architectures (top panel) and

four MIMO architectures (bottom panel). Four implemen-

tations of each architecture are shown, three of equal cost

(one FIR, and two state-space, using BMT and HOA) and

one of double cost (FIR×2). For all systems, the L∞ er-

ror is bounded from below by the Hankel error, but for the

state-space systems, the Hankel error provides a tight bound

on the L∞ error. For the FIR filter array, the error is zero for

D ≤ 8. However, for large D the error of the FIR systems
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Fig. 4. Average ‘perceptual’ RMSE for four MIMO systems

with cost C = 8000, and one MIMO system with cost C =
16000. See Fig. 3 legend.

grows more rapidly than the state-space systems such that for

D>20, the state-space systems achieve lower error than even

the FIR ×2 filter array. The state-space systems yield similar

error, although the HOA method achieves slightly lower error.

A common perceptual-error metric for audio applications

is the L2 norm applied to the log-magnitude log-frequency

error spectrum after critical-band smoothing [1, 4]. For the

MIMO systems considered here, the error is measured for

each input/output pair and averaged. Fig. 3 shows the average

error for four SIMO architectures (top panel) and five MIMO

architectures (bottom panel). The same systems are shown as

in Fig. 2, with the addition of one hybrid MIMO system.

For the SIMO architecture, the state-space systems also

yield significantly lower error for D > 20. As D increases

beyond 100 directions, the order of the state-space systems

fall below N =20 and performance rapidly deteriorates. The

BMT method yields slightly lower perceptual RMSE than

the HOA method, even though HOA yields lower L∞ error.

This is due in part to the difference between the L∞ and L2

norms. The HOA method distributes the spectral error uni-

formly across frequency, a necessary condition for reducing

the L∞ error. In contrast, BMT is often found to yield peaks

in the error at or near spectral notches in the original transfer

functions [9], which may be undesirable given the perceptual

importance of HRTF notches.

While MIMO state-space systems yield promising perfor-

mance in Figs. 2 and 3, the phase distortion due to ITD is

problematic for binaural displays. The hybrid MIMO system

described in § 2.3 retains the desired phase response. The

performance of the hybrid MIMO system is similar for BMT

and HOA. Fig. 3 shows performance of a hybrid MIMO sys-

tem designed using HOA. The hybrid MIMO system yields a

modest improvement over the FIR filter array for 30<D<60.

The relative performance of the MIMO state-space systems

improves if a higher computational cost bound is used. Fig. 4

shows the average perceptual RMSE for the same MIMO sys-

tems if the cost bounds are doubled.

Formal listening tests to validate these methods are in

preparation, but informal listening tests confirm the numeri-

cal results presented above. Furthermore, we found the state-

space implementations to be robust to coefficient quantization

error, unlike some IIR filter designs.

4. CONCLUSION

We have shown that state-space systems designed using Han-

kel methods offer a substantial computational savings over

conventional filter arrays for binaural displays that filter many

directions simultaneously. BMT and HOA yield similar per-

formance, although subtle differences are demonstrated. The

SIMO architecture offers a direct improvement over conven-

tional methods, whereas the MIMO architecture requires a

hybrid approach to preserve the ITD, and only offers an ad-

vantage for relatively high cost systems.
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