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ABSTRACT

The numerical computation of head related transfer functions has

been attempted by a number of researchers. However, the cost of

the computations has meant that usually only low frequencies can be

computed and further the computations take inordinately long times.

Because of this, comparisons of the computations with measure-

ments are also difficult. We present a fast multipole based iterative

preconditioned Krylov solution of a boundary element formulation

of the problem and use a new formulation that enables the reciprocity

technique to be accurately employed. This allows the calculation to

proceed for higher frequencies and larger discretizations. Prelimi-

nary results of the computations and of comparisons with measured

HRTFs are presented.

Index Terms— Head related transfer function, Boundary ele-

ment method, Fast Multipole Method, Reciprocity

1. INTRODUCTION AND PREVIOUS WORK

The Head Related Transfer Function (HRTF) is the Fourier trans-

form of the impulse response of a human being in anechoic (or in-

finite) space to a source of sound placed at a location (r, , ) in
a head centered coordinate system measured at the entrance to the

ear canal. Knowledge of the HRTF allows reintroduction of the

cues that are caused by the scattering of sound off the body into

headphone based reproduction of music and auditory reality. As the

HRTF arises from a scattering process, it depends on the geometry

(and composition) of the scatterer. Humans display a remarkable

diversity in their sizes and shapes. In particular, their external ears

(pinnae) exhibit considerable inter-personal variability. As a conse-

quence, HRTFs are individual, and it is necessary to obtain users’

HRTFs for recreation of auditory reality for them.

Experimental Work: Since the HRTF must be determined for

each individual, there have beenmany attempts to measure the HRTF.

A first series of approaches are based on acoustics and attempt to

measure the HRTF. A conventional technique moves a source se-

quentially in space and measures the received sound for each source

position at microphones placed at the entrance to the ear canals.

A more recent approach, based on the principle of acoustical reci-

procity, places a source at the entrance to the ear canal and measures

the sound at a network of microphones placed in space. Since these

measurements are made in parallel at many locations, this method

is much faster. These approaches (with additional references) are

summarized in [1, 14].

Numerical Approaches: A second approach attempts to obtain

HRTFs via numerical computation. It is the subject of this paper.
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Since the HRTF results from a scattering process, it can be com-

puted if a mesh of the human being is available. Any calculation

must resolve the smallest wavelengths of interest, and to satisfy the

Nyquist criterion, the discretization must involve at least two points

per wavelength. In practice 6 to 10 points per wavelength are re-

quired. Since the wavenumber k is inversely proportional to wave-

length, if a numerical method is a surface based method (such as the

boundary element method), then problem size scales as O
¡
k2D2

¢
,

whereD is the size of the domain. If the problem is solved via a vol-

ume based approach, then the number of discretization points scales

as O
¡
k3D3

¢
. In the former case dense matrices appear and typical

direct solution procedures require O(k4D4) memory and O(k6D6)
computation, while iterative solution can be achieved for O

¡
k4D4

¢
memory and O

¡
k4D4

¢
per iteration cost.

Katz [8] used a setting which replicated the conventional HRTF

measurement setup and required a solution of the BEM equations for

each source location and for each frequency. Kahana et al. [7] pro-

posed the use of the reciprocal setup with a singular source placed

at the entrance to the ear canal and with the computed field obtained

in a single calculation at all points of interest. The calculation had

to be repeated for each frequency of interest. Once the HRTF is

obtained at a set of frequencies, an inverse Fourier transform could

be used to obtain the time-domain head-related impulse response

(HRIR), which is needed in applications. Both authors replicated the

blocked-meatus setup that is necessary for headphone-based render-

ing applications. Algazi et al. [2] applied a BEMmethod to compare

measurements of KEMAR HRTFs at low frequencies with a “snow-

man” model and validated an analytical model for the HRTF at low

frequencies. Walsh et al. [12] used a more sophisticated boundary

element approach (Galerkin formulation, Burton Miller approach to

avoiding stability problems, parallel computing) to solve the equa-

tions using direct methods (PLAPACK). In addition, he studied ear

canal resonance effects. All these authors could achieve calculations

only up to about 6 kHz and required several hours of processing per

frequency. Otani and Ise [9] shifted costs to the pre-processing phase

in order to speed up calculation of the HRTFs for new source posi-

tions. They spent 420 hours to compute HRTFs for frequencies up

to 12.5 kHz.

For the volume case, the resulting matrices are sparse. Despite

the increased number of points, an iterative solution that is competi-

tive with or faster than the surface techniques can be achieved, with

typically O(k4D4) solution time and O
¡
k3D3

¢
memory. Xiao and

Liu [13] implemented a finite-difference time domain approach to

compute HRIRs directly. This approach allows a single computation

to obtain all frequency components. Their calculations were valid

to about 10 kHz and took about 5 hours of computing time. On the

other hand, reciprocity was not used, and computations had to be
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repeated for each direction. Indeed, while singularities can be eas-

ily incorporated in the BEM, they are harder to include in a mesh

based approach, and the use of reciprocity would require a sophis-

ticated code. Furthermore, in neither the surface-based papers nor

the volume-based ones (except the low frequency computations re-

ported in [2]) was the torso included, which would further increase

the computation time necessary.

Present Contribution: In many applications, it would be bene-

ficial to have a capability to compute the HRTF given a mesh, even

though HRTFs can be measured quite quickly [14]. Since HRTFs

are well modeled for frequencies below 3kHz via an analytical an-

thropometric model, the computations are likely important only for

frequencies higher than this. However high frequencies require finer

meshes, and the storage and time required for computation increases.

Thus faster algorithms with a capability to handle torsos are needed.

Ideally the algorithm would execute relatively quickly and would

allow one to use computation as a means of exploration of the fac-

tors influencing spatial hearing. While we do not achieve such result

completely, we have made considerable progress towards it.

We employ an algorithm based on the fast multipole method

(FMM) using coaxial translation operators described in [5, 6] to con-

sider the reciprocal HRTF setup. With fast multipole acceleration

based on coaxial translation, the cost of the surface methods can be

reduced to O(k2D2 log kD) memory and per iteration cost at low
frequencies (kD - 80) and toO(k3D3) for larger kD up to (kD '
400) [6]. While the FMM can be used to accelerate the matrix-vector

product (the dominant cost in an iteration), the number of iterations

needed depend upon the condition of the matrix and the iteration

method chosen. Preconditioned Krylov methods, such as the flexible

generalized minimum residual method (FGMRES), ensure a conver-

gent iteration, which, with an appropriate choice of a preconditioner,

can help achieve quick convergence. With the resulting code, we are

able to compute HRTFs for relatively high frequencies (up to 14 kHz

with the torso and up to 22 kHz without). We also present a prelimi-

nary comparison of the computed HRTFs with measured ones for the

KEMAR manikin. Our method employs the reciprocity approach,

and we provide a better numerical formulation for it, avoiding some

numerical errors caused by improper placement of the source in the

domain as opposed to the boundary by previous authors.

2. NUMERICAL FORMULATION

We first set up the boundary value problem for the general BEM, and

then for the reciprocal case. In the latter a source singularity is placed

in the ear canal and the HRTF is measured at locations of interest by

measuring the computed potential at those. This idea was first used

in HRTF calculations by Kahana et al. [7]. Ideally, to reproduce the

blocked meatus configuration, we need to place the source right on

the mesh surface at the ear location. In [7] the source was placed

at a location in the domain close to this surface. In comparisons

of the results for a sphere (to be reported in an extended version),

whose analytical HRTF is known, we found that this approximation

performs poorly. In fact for perfect reciprocity we will require the

source to be placed where the microphone would be in the direct

measurement setup. Thus the best place would be on the boundary

of the blocked meatus.

General formulation: Let the complex potential represent the

Fourier transform of the pressure. It satisfies the Helmholtz equation

on an infinite domain V in 3D and is subject to boundary conditions

on S, the surface of the individual whose HRTF is being computed:

2 + k
2 = 0, x V R

3
, k R, (1)

n (x) · (x) = 0, x S, . (2)

Here, as is customary we have assumed the sound hard boundary

condition on the surface of the mesh, though a more general im-

pedance boundary conditions is available in the software. On the

boundary at infinity we assume the Sommerfeld condition

lim
|x|

μ
|x|

μ
|x|

ik

¶¶
= 0. (3)

Arbitrary solutions to these equations can be expressed as sums of

the single and double layer potentials [3]

(y) = K ( (x)) + L (p (x)) , (4)

K ( (x)) =

Z
S

(x)G (x y) dS (x) ,

L (p (x)) =

Z
S

p (x)
G (x y)

n (x)
dS (x) ,

where x S, y V. The values and p are surface densities, while

G is the free space Green’s function:

G (x y) =
eik|x y|

4 |x y|
. (5)

Green’s identity holds, which is equation (4) with (x) = q (x)
and p (x) = (x), and which can be used to obtain in the

domain if the potential and its normal derivative are known on the

boundary.

Setting x S, y S leads to the integral equation

±
1

2
(y) = K (q (x)) + L ( (x)) , (6)

which can be used together with Eq. (2) for determination of the

boundary values. One approach to avoid spurious eigenvalues for

the external BEM is to stay within the layer potential formulation

[3], which, using the jump conditions, leads to:

± (y) = ±
1

2
p (y) +K ( (x)) + L (p (x)) , , (7)

q
± (y) = ±

1

2
(y) +K

0 ( (x)) + L
0 (p (x)) , x,y S,

K
0 ( (x)) =

K ( (x))

n (y)
; L0 ( (x)) =

L ( (x))

n (y)
. (8)

This can be used for solution of the Helmholtz equation, with (x) =
i p (x) ,where is some complex parameter. Particularly for the

external (scattering) problems, which solution is unique, this avoids

spurious internal resonances.

Incorporating the source in the reciprocal set-up: As dis-

cussed earlier, we would like to move the source from a location near

the surface to the location directly on it. We can represent (x;x )
as

(x;x ) = G (x x )+ scat (x;x ) ; scat = G (x x )+ 0

We must find out how the scattered field is when the singularity is at

the surface. A source near a hard boundary generates image source

of the same intensity. As the source moves to the boundary, the part

of the image source moves to the boundary as well. Accordingly
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scat contains a monopole source that is radiating outward, and a

regular, radiating part 0. The latter satisfies the boundary conditions

0

n (x)
= 2

G (x x )

n (x)
, x S, x 6= x .

At the location x on a flat surface it satisfies

0 (x;x )

n (x)

¯̄̄
¯
x=x

= 0,

to provide perfect reflection. With these boundary conditions, the

BEM software described in [5] can be used unaltered.

BEM speed up with the FMM: Our goal is to use an itera-

tive method that requires a matrix-vector product in every step. This

product can be obtained quickly to a specified arbitrary precision us-

ing the FMM. Our approach to do this is described in [5]. In our

BEM code we used surface discretization with flat triangular ele-

ments with a linear variation of the unknown function (potential or

its normal derivative) over the panel. The basic iterative method we

used is the Generalized Minimal Residual Method (GMRES) and

its modifications (flexible GMRES, fGMRES) [10]. In this method

there is an external iteration and several internal preconditioning it-

erations for each step of the external iteration. The choice of the

preconditioner has an important bearing on the achievable accuracy.

It should solve a similar system but at a much lower accuracy very

quickly. We employ the FMM itself at a lower precision setting to

create a preconditioner. Further details will be provided in a larger

journal version of this paper.

Fig. 1. A mesh of KEMAR used in our runs. The mesh has 54945

nodes and 109882 elements. The ellipsoidal torso dimensions are

those in [2]. For the computations above 12 kHz the torso was

meshed using a half ellipsoid, with the overall mesh having the same

total number of nodes and elements.

KEMAR mesh:We solve the problem of computing the HRTF

of the KEMARmanikin,1 which is widely used for testing in acoustics.

1http://www.gras.dk/00012/00330/

Themesh of the right half of the head of KEMARwas obtained cour-

tesy of Dr. Yuvi Kahana, who originally scanned and processed the

mesh. We processed the mesh a bit further for our purposes, and then

reflected the mesh to obtain a whole head mesh. This mesh is able to

resolve wavelengths of interest up to 9 kHz. Nevertheless, we used

it for higher frequency computations. It is also somewhat noisy. For

proper computations, a finer and smoother mesh is being currently

developed.
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Fig. 2. The performance of the various components of our FMM

BEM software on a test problem at various sizes. For comparison

the performance of a typical BEM direct software package, and a

BEM iterative package are also shown.

Fig. 3. Performance of the preconditioner for kD = 120.

While previous authors have not included a torso, we included

a torso in our runs. A scanned KEMAR torso mesh was not avail-

able. However, it was shown in [2] using extensive measurements

and simulations that an ellipsoidal body fit for KEMAR does a very

good job. We accordingly meshed an ellipse of that size and used
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that for the torso in our runs. Fig. 1 shows the mesh used. As the

frequency increases the influence of the torso decreases, and at high

frequencies it only participates by providing a shoulder reflection for

some directions. On the other hand the FMM algorithm used is not

as efficient when the size of the domain is large for high frequency

computations and the speed would improve with a smaller sized do-

main. Accordingly, for frequencies beyond 11 kHz we use just the

top half of the ellipsoidal mesh, with bottom capped off. The total

number of vertices and elements for this mesh is the same as for the

full ellipsoid. For frequencies above 14kHz the head alone was used.
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Fig. 4. Comparison of computed and measured HRTFs in the CIPIC

database [1] for selected positions.

3. RESULTS

Test Results: The FMM/BEM software we used has been tested on

a large number of problems and results were reported in [5]. In par-

ticular it was tested against analytical solutions such as scattering

off a sphere, and was shown to perform as expected. One crucial

item in the use of the software, especially at higher frequencies, is

the performance of the preconditioner. Fig. 3 presents the perfor-

mance with our FMM based preconditioner, and shows that the soft-

ware converges in 45 more expensive iterations, as opposed to 1369

cheaper ones.

Calculation Procedure: The calculations reported here were

performed for the frequencies (1-11 kHz) with the KEMAR head

plus full torso, (12-14 kHz) with head plus half torso, and for 15

& 20 kHz with the head alone. Fig. 4 shows a comparison of the

KEMAR with small pinna, right ear, from the CIPIC database [1].

4. CONCLUSIONS AND DISCUSSION

We have reported on a procedure that, given an appropriately re-

solved mesh, allows the calculation of a full HRTF on a desktop

personal computer. While measurement techniques have improved

sufficiently over the past few years (see [14]) so that it is possible to

measure HRTFs in a minute, the availability of a numerical model

should allow one to address questions not easily addressed via mea-

surement.

Sensitivity analysis and cause and effect relationships: Hav-

ing a numerical model of the process by which cues are generated

gives us an opportunity to explore what cues are available, and what

the extent of their variation are. Such sensitivity testing also pro-

vides a guideline for the accuracy required in the reconstruction of

the body parts, and in the numerical solution. Once the sensitive

components are known, one can build possible models of how the

human brain performs source localization. Similarly, it is easier to

perform virtual surgery on a mesh of an individual to see how a par-

ticular feature influence their HRTF.

Use in other scattering: The spatial scattering of sound is known

to be important in audio, and can be used for modeling room acoustics.

The availability of numerical modeling software should help in the

use of computations as a tool in design of audio systems.
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