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ABSTRACT

This paper introduces a multilinear (tensor) framework for

the analysis and synthesis of the head-related transfer function

(HRTF). The HRTF is the result of the confluence of two fac-

tors, sound location and person (anatomy). Our multilinear

modeling technique employs a tensor extension of the con-

ventional matrix singular value decomposition (SVD), known

as the N -mode SVD [1] which explicitly represents the HRTF

in terms of its constituent factors. Anatomical data is mapped

to our multilinear HRTF model using regression. This map-

ping defines a data-driven model capable of producing dif-

ferent personalized HRTFs from easily obtained anatomical

measurements. We show that our approach yields objectively

superior results to those of a mapping based on principle com-

ponents analysis (PCA).

Index Terms— Audio systems, HRTF, Tensors, Multilin-

ear algebra

1. INTRODUCTION

The head related transfer function (HRTF) and its corre-

sponding impulse response, the head related impulse re-

sponse (HRIR), are essential components of many approaches

to binaurally-based spatial audio synthesis. The HRTF de-

scribes, for a particular person and sound source direction,

the frequency response that results from a complex interac-

tion of anatomically-based reflection and diffraction effects.

Along with interaural time differences and interaural level dif-

ferences, these filtering effects are believed to be the primary

cues used to discern sound direction [2]. Thus by filtering a

sound sample with the appropriate HRTF, convincing virtual

auditory environments can be constructed.

The HRTF is a function of two variables, sound source di-

rection and the external morphology (head, torso, and outer

ear) unique to each person. In general, a set of HRTFs

recorded from one person will yield poor results when used

to spatialize audio for someone else. Use of a mismatched

set of HRTFs often results in front-back confusion as well as

difficulty perceiving source elevation [3]. Unfortunately, it

is difficult and time-consuming to measure HRTFs, making

empirically-based customization unrealistic. This has given

rise to significant interest in model-based approaches. Several

recent papers describe approaches to HRTF customization us-

ing anthropometric data [4, 5]. Systems based on anatomi-

cal measurements are a particularly attractive approach as the

data is easy to gather and computer vision systems promise

to make this process even easier [6]. Other prior modeling

work [7, 8] has used PCA to analyze HRTF data. However,

PCA works best with functions of one variable as it can only

capture the total variation present in a dataset. This inabil-

ity to distinguish between variations due to sound source di-

rection and variations due to morphology can result in PCA

disposing of information that is important for spatial localiza-

tion.

In this paper, we introduce a nonlinear, multifactor model

of HRTFs that generalizes conventional PCA. Whereas PCA

employs linear (matrix) algebra, our approach exploits mul-

tilinear (tensor) algebra. Multilinear algebra, the algebra of

higher order tensors, is able to learn the interactions of the

multiple factors inherent to HRTFs and separately encode

each of the modes. We exploit the dataset’s natural factoring

by using the N -mode SVD, a tensor decomposition which

allows us to explicitly represent each of the factors in the

dataset (frequency, people, and direction) as orthogonal vec-

tor spaces. Each of these factor spaces (location and person)

encodes a representation, statistically invariant of the other,

that describes how the HRTF data is influenced by that partic-

ular factor.

Next, we define a data-driven model capable of producing

different personalized HRTFs from easily obtained anatom-

ical measurements by mapping anthropometric data to our

HRTF data model. Anthropometric features are mapped

to the people factor space produced by the N -mode SVD

through regression. Then, given anatomical measurements of

a person not in the database, we use the regression model to

solve for that person’s representation in people space. This

representation is then combined with the results of the N -

mode SVD to generate a custom set of HRTFs. This approach

is similar in spirit to that of Inoue et al. [9] who use a multi-

ple regression model to map anthropometric features to the

coefficients representing each HRTF after applying PCA.
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2. TENSOR ALGEBRA

Fig. 1. N -mode SVD decomposition illustrated for a 3-mode

tensor, D. The result is core tensor Z and mode matrices

Ufreq , Upeople, and Udir. Dimensionality reduction, shown

for mode Upeople, is accomplished by truncating the rows of

Upeople as well as the corresponding portions of Z .

A tensor is a higher order generalizations of a scalars

(0th-order tensor), a vectors (1st-order tensor), and matri-

ces (2nd-order tensor). 1 A tensor X ∈ R
I1×I2×...×IN

is said to be of order N . The mode-n product of a ten-

sor, X ∈ R
I1×I2×...×In×...,IN , by a matrix, M ∈ R

Jn×In ,

is denoted as X ×n M. This product yields a tensor

Y ∈ R
I1×...,In−1×Jn×In+1×...×IN whose entries are given by

yi1,...,in−1,jn,in+1,...,iN
=

∑
in

xi1,...,in−1,in,in+1,...,iN
mjnin .

The singular value decomposition (SVD), which forms

the basis of principle components analysis (PCA), factors a

matrix D = U1SUT
2 , where U1 is a set of orthonormal ba-

sis vectors spanning column space, S is the diagonal singular

value matrix, and U2 is a set of orthonormal basis vectors

spanning row space. Using the mode-n product, this decom-

position can be written as mode-n product of the two othonor-

mal vector spaces D = S ×1 U1 ×2 U2. The more general

N -mode SVD decomposes a tensor of order N into its N
constituent vector spaces:

D = Z ×1 U1 ×2 U2 . . .×n Un . . .×N UN (1)

The core tensorZ plays a role analogous to the eigenvalue

matrix S in the SVD (although note that its non-diagonal en-

tries are not necessarily zero) and modulates the interaction

between modes. The columns of each mode matrix, Ui, span

the space of that factor while the rows encode the particu-

lar instances of that factor that are present in D. For a more

detailed discussion of the N -mode SVD, see Vasilescu and

Terzopoulos [1].

Perhaps one of the most useful aspects of the N -mode

SVD is the ability to perform targeted dimensionality reduc-

1We use uppercase calligraphic letters to denote tensors, uppercase bold

letters to denote matrices, and lowercase bold letters to denote vectors.

tion. In contrast to traditional PCA where dimensionality re-

duction affects all aspects of the data, we can truncate the ba-

sis vectors of each mode matrix separately, affording a much

finer degree of control. Dimensionality reduction through

truncation has a bounded error that is equal to the sum of the

eigenvalues of the truncated vectors [10]. Figure 1 illustrates

the N -mode SVD as well as dimensionality reduction of one

mode.

3. DATA

We use the publicly available CIPIC database [11] which con-

tains head related impulse responses (HRIRs) recorded for

both ears of 45 subjects over 1250 directions (25 azimuths

θ ∈ [−80..80] and 50 elevations φ ∈ [−45..230.625] speci-

fied in interaural polar coordinates) spaced roughly uniformly

over the head sphere. Each HRIR is 200 samples long (ap-

proximately 4.5 ms) and was recorded at a 44.1 kHz sam-

pling rate in 16-bit resolution. Each HRIR was transformed

into an HRTF by a 512-point FFT and then filtered to contain

only frequencies between 500 Hz and 16 kHz, leaving 181
frequencies in each HRTF. We then combined left and right

ear data for each direction and person by concatenating each

pair of HRTFs into a single vector of length 362.

The database also contains anthropometric data for each

of the subjects, although eight subjects are missing one or

more morphological measurements and therefore were not

used in our experiments. For the remaining 37 subjects,

we used the following morphological features: head width,

cavum concha height, cymba concha height, cavum concha

width, fossa height, pinna height, pinna width, intertragal in-

cisure width, cavum concha depth, pinna rotation angle, and

pinna flare angle. The measurements for both ears of each

person were concatenated together and PCA was performed

on the resulting vectors. The first 10 principle components

were retained as they explained over 90% of the data’s vari-

ance. A column of 37 ones was then prepended to the matrix

of anthropometric coefficients to provide a constant term for

the regression model. We refer to the resulting dataset as A.

4. HRTF CUSTOMIZATION

Using the HRTF data described above, we define a data ten-

sor, D ∈ R
F×P×D where F is the number of frequencies

(362), P is the number of people (37), and D is the number

of directions (1250). Using the N -mode SVD, we decompose

the tensor as follows (see Figure 1):

D = Z ×1 UF ×2 UP ×3 UD (2)

In our experiments, we reduced the dimensionality of the

people mode, UP , from 37 to 5 (chosen ad-hoc), giving ÛP .

We now wish to find a mapping A �→ ÛP . This can be done

with the following regression model,
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(a) Spectral distortion values for φ = 0, θ = [−80..80]
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(b) Correlation values for φ = 0, θ = [−80..80]
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(c) Spectral distortion values for θ = 0, φ = [−45..230.625]
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(d) Correlation values for θ = 0, φ = [−45..230.625]

Fig. 2. Comparison of representative tensor and PCA modeling results for one fixed elevation and one fixed azimuth. Both

spectral distortion scores as well as correlation values between synthesized and real HRTFs are shown.

ÛT
P = BAT (3)

where B is a matrix of coefficients. Using A+ to denote

the pseudoinverse of A, we can easily solve for B as:

BT = A+ÛP (4)

Given a vector of anthropometric measurements, anew for

a person not in the database, we solve for the vector of coef-

ficients, û p
new

, that correspond to the new person in people

space.

ûT
p

new
=

[
1 aT

new
]
BT (5)

We can now solve for the complete set of HRTFs, Dnew,

using û p
new

:

Dnew = Z ×1 UF ×2 ûT
p

new
×3 UD (6)

5. EXPERIMENTS

To test the effectiveness of our approach, we conducted a suite

of experiments comparing our multilinear approach to PCA.

For the PCA approach, we considered the HRTFs across sub-

jects for each direction separately. For each direction, d, we

performed PCA on the corresponding HRTFs of all subjects,

reducing their dimensionalities down to 5 (same reduction as

UP ). This yielded a matrix, Ĉd, containing the coefficient

vectors for direction, d, for each subject. As with the tensor

framework, regression was then applied to map the anthro-

pometric data to Ĉd. Note, however, that the PCA approach

requires a separate regression model for each direction (1250

in total), while the tensor model requires only one.

Performance was evaluated using a cross-validation ap-

proach. For each of the 37 subjects we constructed both a

tensor as well as a PCA-based mapping using the other 36
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subjects’ data. These models were then used to synthesize

the held-out subject’s HRTFs from their anthropometric data.

We then computed the reconstruction error and correlation

between each of the held-out subjects’ synthesized and real

HRTFs. These correlation and error values were then aver-

aged across subjects. The spectral distortion was used as an

error metric between the real and synthesized HRTF data:

SD
(
H, Ĥ

)
=

√√√√ 1
N

N∑
i=1

(
20 log

|Hi|
|Ĥi|

)2

(7)

where |Hi| is the magnitude of the ith frequency of the

true HRTF, |Ĥi| is the magnitude of the ith frequency of the

synthesized approximation, and N is the number of frequen-

cies.

Figure 2 shows a pair of representative experimental re-

sults. Spectral distortion and correlation values are shown for

all azimuths with a fixed elevation (Figure 2a and Figure 2b)

and for all elevations with a fixed azimuth (Figure 2c and Fig-

ure 2d). In both cases 0 was arbitrarily chosen for the fixed

value.

As can be seen in Figure 2, the tensor approach resulted

in lower spectral distortion and higher correlation values in a

variety of experimental conditions. In fact, in all 1250 direc-

tional cases, the spectral distortion was lower and the correla-

tion was higher for the tensor model than for the PCA model.

6. CONCLUSIONS

We have presented a novel tensor framework for model-

ing person-specific HRTFs. Our generative model is fully

data-driven and capable of producing individualized sets of

HRTFs from easily obtained anatomical measurements. We

have demonstrated that our approach compares favorably to

a PCA-based framework, achieving consistently lower spec-

tral distortion scores and consistently higher correlation val-

ues across all directional conditions. Furthermore, our sys-

tem maps anthropometrics to HRTFs using a single regression

model while the PCA approach requires a separate regression

model for each spatial direction.

We are currently planning listening experiments to pro-

vide a subjective measure of our system’s abilities. In addi-

tion, we are investigating how the tensor framework might be

used in other areas of HRTF research, such as spatial interpo-

lation and source position estimation [12].
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