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ABSTRACT

In this paper, we investigate a new blind source separation (BSS)
structure from a permutation-robustness viewpoint, to mitigate the
permutation problem which commonly arises in frequency-domain
independent component analysis (ICA). Permutation robustness means
that how much the BSS method is not affected under a certain prob-
ability of arising permutation, unlike the conventional permutation-
solving approaches. We address to analyze our previously proposed
BSS architecture, so called blind spatial subtraction array (BSSA). In
BSSA, source extraction is achieved by subtracting the power spec-
trum of the estimated noise via ICA from the power spectrum of
partly speech-enhanced signal via delay-and-sum (DS) procedure.
Indeed BSSA partially involves permutation problem in the ICA-
based noise estimator part. However, BSSA can efficiently reduce
the negative affection of the permutation owing to the over-subtraction
in the spectral subtraction and defocusing properties in DS. Exper-
iments using artificial and real-recording-based simulations reveal
that the proposed method outperforms the conventional ICA.

Index Terms— Speech enhancement, acoustic signal process-
ing, acoustic arrays

1. INTRODUCTION
Blind source separation (BSS) is the approach to estimate original
sources using only information of observed signals. Recently, vari-
ous BSS methods based on independent component analysis (ICA) [1]
have been presented for acoustic-sound separation [2, 3]. Particu-
larly, frequency-domain ICA (FDICA) [2] is the most popular ap-
proach to address the convolutive BSS problem. In FDICA, how-
ever, source permutation ambiguity arises in each frequency bin, and
heavily decreases the resultant quality. Therefore, it is indispensable
for us to align the permutation so that each separated signal con-
tains frequency components from the same source. Although various
permutation solvers, e.g., direction-of-arrival (DOA) based method,
have been proposed [2, 3, 4], permutation problem cannot be solved
completely. In addition, increase of the permutation-salvaging accu-
racy requires higher computational costs.

To mitigate the problems, in this paper, we investigate a new
BSS structure from a ”permutation-robustness” viewpoint, unlike
the conventional permutation-solving approaches. Permutation ro-
bustness means that how much the BSS method is not affected un-
der a certain probability of arising permutation, and such an impor-
tant property has never been studied so far in the previous ICA re-
searches. The improvement of permutation robustness with small
computations is a novel and efficient way for increasing the BSS
quality. How can we construct a permutation-robust BSS? The an-
swer is within our previously proposed BSS architecture, so called
blind spatial subtraction array (BSSA) [5]. In BSSA, source extrac-
tion is achieved by subtracting the power spectrum of the estimated
noise via ICA from the power spectrum of partly speech-enhanced
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signal via delay-and-sum (DS) procedure. Indeed BSSA partially in-
volves permutation problem in the ICA-based noise estimator part.
However, BSSA can efficiently suppress the negative affection of the
permutation owing to the over-subtraction in spectral subtraction and
defocusing properties in DS. Efficacy of the proposed method can be
revealed by artificial and real-recording-based simulations.

2. BLIND SPATIAL SUBTRACTION ARRAY [5]
2.1. Overview of BSSA
BSSA consists of a delay-and-sum array (DS) based primary path
and a reference path for the ICA-based noise estimation (see Fig. 1).
The estimated noise component by ICA is efficiently subtracted from
the primary path in the power-spectrum domain without phase infor-
mation. The detailed signal processing is shown below.

2.2. Partial speech enhancement in primary path
First, the short-time analysis of observed signals is conducted by a
frame-by-frame discrete Fourier transform (DFT). The J-channel-
array’s observed signal is given by

X( f , τ)= [X1( f , τ), . . . , XJ( f , τ)]T = A( f ) {S( f , τ) + N( f , τ)} , (1)

S( f , τ)= [0, . . . , 0︸��︷︷��︸
U−1

, S U ( f , τ), 0, . . . , 0︸��︷︷��︸
K−U

]T, (2)

N( f , τ)= [N1(f ,τ),...,NU−1(f ,τ),0,NU+1(f, τ),...,NK(f, τ)]T, (3)

where f is the frequency bin and τ is the frame number, A( f ) is a
mixing matrix, S( f , τ) is a target speech signal vector, N( f , τ) is a
noise signal vector, U expresses the target speech number, and K is
the number of sound sources. In the primary path, the target speech
signal is partly enhanced in advance by DS. This can be given as

Y( f , τ)=WT
DS( f )X( f , τ)

=WT
DS( f )A( f )S( f , τ) +WT

DS( f )A( f )N( f , τ), (4)

WDS( f )= [W (DS)

1
( f ), . . . ,W (DS)

J ( f )]T, (5)

W (DS)
j ( f )=

1

J
exp
(
−i2π( f /M) fsdj sin θU/c

)
, (6)

where Y( f , τ) is a primary-path output which slightly enhances target
speech, WDS( f ) is a filter coefficient vector of DS, M is the DFT
size, fs is a sampling frequency, dj is a microphone position, and c
is sound velocity. Besides, θU is the estimated DOA of the target
speech, which is given by ICA part in Sect. 2.3. In Eq. (4), the
second term in the right-hand side expresses the remaining noise in
the output of the primary path.

2.3. ICA-based noise estimation in reference path
The proposed BSSA includes ICA-based noise estimation in the ref-
erence path. In ICA part, we perform signal separation using a com-
plex valued unmixing matrix WICA( f ), so that the output signals
O( f , τ) = [O1( f , τ), . . . ,OK( f , τ)]T become mutually independent;
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Fig. 1. Block diagram of proposed BSSA.

this procedure can be represented by

O( f , τ) = WICA( f )X( f , τ) (7)

W[p+1]

ICA
( f )= μ

[
I − 〈Φ (O( f , τ)) OH( f , τ)〉τ

]
W[p]

ICA
( f ) +W[p]

ICA
( f ),(8)

where μ is the step-size parameter, [p] is used to express the value
of the p-th step in the iterations, and I is an identity matrix. Be-
sides, 〈·〉τ denotes a time-averaging operator, MH denotes conjugate
transpose of matrix M, and Φ(·) is the appropriate nonlinear vector
function [3]. At the same time, we can estimate DOAs by look-
ing at null directions in the directivity pattern which is shaped by
WICA( f ) [3], and we designate DOA of the target speech signal as
θU . In the reference path, target signal is not required because we
want to estimate only the noise component. Accordingly we remove
the separated speech component OU ( f , τ) from ICA outputs O( f , τ),
and construct the following “noise-only vector,” Q( f , τ);

Q( f , τ) =
[
O1( f , τ), ...,OU−1( f , τ), 0,OU+1( f , τ), ...,OK( f , τ)

]T . (9)

Next, we apply the projection back (PB) [2] method to remove the
ambiguity of amplitude. This procedure can be represented as

E( f , τ) = W+
ICA( f )Q( f , τ), (10)

where M+ denotes Moore-Penrose pseudo inverse matrix of M. Here,
Q( f , τ) is composed of only noise components. Therefore, E( f , τ) is
a good estimation of the received noise signals at the array;

E( f , τ) � A( f )N( f , τ). (11)

Finally, we obtain the estimated noise signal Z( f , τ) by performing
DS as follows:

Z( f , τ) =WT
DS( f )E( f , τ) � WT

DS( f )A( f )N( f , τ). (12)

Equation (12) is expected to be equal to the noise term of Eq. (4) in
the primary path.

2.4. Source extraction processing
In the proposed BSSA, source extraction is carried out by subtract-
ing the estimated noise power spectrum (Eq. (12)) from the partly
enhanced target speech power spectrum (Eq. (4)); thus

YBSSA( f , τ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{
|Y( f , τ)|2 − β · |Z( f , τ)|2

} 1
2

( if |Y( f , τ)|2 − β · |Z( f , τ)|2 ≥ 0 ),

γ · |Y( f , τ)| (otherwise),

(13)

where YBSSA( f , τ) is the output of BSSA, β is an over-subtraction
parameter, and γ is a flooring parameter. The appropriate setting,
e.g., β > 1 and 1 � γ > 0, give an efficient noise reduction. Finally,
we perform mel-scale filter bank analysis, log transform and discrete
cosine transform to obtain mel-frequency cepstrum coefficient for
speech recognizer [5].

3. PERMUTATION-ROBUSTNESS ANALYSIS IN BSSA
3.1. Overview
In this section, we present a permutation-robustness analysis in BSSA
architecture. In the conventional ICA, when the permutation arises,
we directly suffer from the permuted noise component which is wrongly
regarded as the target signal. Thus the conventional ICA has no ro-
bustness against the permutation. On the other hand, in BSSA, ad-
verse effect by the permutation is mitigated because spectral-subtraction-
based source extraction technique reduces the permuted component,
and DS defocuses the component arriving from out of look direc-
tion. Therefore, we can say that BSSA architecture is a permutation-
robust structure. The detailed analysis is shown below.

3.2. Permutation robustness by over-subtraction
Here, we assume that source separation was performed perfectly by
FDICA except for arising permutation in the frequency bin fp. Under
this assumption, the estimated target speech signal in the frequency
bin fp by ICA (including PB processing) can be described as

YICA( fp, τ) = A( fp)Ne( fp, τ), (14)

Ne( fp, τ) = [0, . . . , 0︸��︷︷��︸
n−1

,Nn( fp, τ), 0, . . . , 0︸��︷︷��︸
K−n

]T, (15)

where YICA( fp, τ) is the output signal vector as a target by ICA,
Ne( fp, τ) is a noise signal vector estimated as target speech signal
vector by mistake, Nn( fp, τ) is a noise component estimated as tar-
get speech component by mistake, and n(� U) expresses the com-
ponent number of noise. Moreover, since Ne( fp, τ) is composed
of zero components except the specific noise component Nn( fp, τ),
YICA( fp, τ) can be rewritten as

YICA( fp, τ) = Â( fp)Nn( fp, τ), (16)

Â( fp) = [A1n( fp), . . . , AJn( fp)]T, (17)

where Â( fp) is a transfer function vector of the noise component
Nn( fp, τ), and Ai j( f ) expresses an element of the mixing matrix A( f ).

On the other hand, the estimated noise signal in the reference
path of BSSA can be represented by

Z( fp, τ)=WT
DS( fp)A( fp)L( fp, τ), (18)

L( fp, τ)= [L1(fp,τ), ..., Ln−1(fp,τ), 0, Ln+1(fp,τ), ..., LK(fp,τ)]
T, (19)

where L( fp, τ) is the estimated noise component vector including
the target signal by mistake. Note that the observed signal X( fp, τ)
can be rewritten as X( fp, τ) = A( fp){L( fp, τ) + Ne( fp, τ)}. When
|Y( fp, τ)|2 − β · |Z( fp, τ)|2 ≥ 0, using Eqs. (4) and (18), we can write
the expectation of the power spectrum of BSSA output as

E
[
|YBSSA( fp, τ)|2

]
= E
[
|Y( fp, τ)|2 − β · |Z( fp, τ)|2

]

= E
[
|WT

DS( fp)X( fp, τ)|2 − β · |WT
DS( fp)A( fp)L( fp, τ)|2

]

= E
[
|WT

DS( fp)
{
L( fp, τ) + Ne( fp, τ)

}
|2
]

−E
[
β · |WT

DS( fp)A( fp)L( fp, τ)|2
]

� (1 − β) · E
[
|WT

DS( fp)A( fp)L( fp, τ)|2
]

+E
[
|WT

DS( fp)A( fp)Ne( fp, τ)|2
]
, (20)

where E[·] denotes the expectation operator, and we use the relation
that the cross-terms among the distinct noise components are negli-
gible with taking expectation. Since we usually set over-subtraction
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parameter to β > 1, it is obvious that the first term in the right-
hand side of Eq. (20) is a negative quantity and the following relation
holds:

E
[
|YBSSA( fp, τ)|2

]
< E

[
|WT

DS( fp)A( fp)Ne( fp, τ)|2
]

= E
[
|WT

DS( fp) Â( fp)Nn( fp, τ)|2
]
. (21)

3.3. Permutation robustness by defocusing in DS
Under reverberant conditions, Â( fp) can be expressed by superposi-

tion of all of reflection components. Therefore Â( fp) can be rewrit-
ten as

Â( fp) =
∑

q

r(q) a( fp, θ
(q)), (22)

a( f , θ) = [a1( f , θ), . . . , aJ( f , θ)]T, (23)

aj( f , θ) = exp
(
i2π( f /M) fsdj sin θ/c

)
, (24)

where (q) is used to express the number of q-th reflection compo-
nent, r(q) is a reflection coefficient, θ(q) is a DOA of the reflection
component of the permuted noise Nn( fp, τ), and a( f , θ) is a steering
vector which expresses phase information of the sound source arriv-
ing from direction θ. Using Eq. (22), we can obtain the following
equation,

|WT
DS( fp)Â( fp)Nn( fp, τ)|2
=
∣∣∣
∑

q

r(q)WT
DS( fp)a( fp, θ

(q))Nn( fp, τ)
∣∣∣2

=
∑

q

∣∣∣r(q)WT
DS( fp)a( fp, θ

(q))Nn( fp, τ)
∣∣∣2 +C1, (25)

where C1 is a term which contains all of cross-terms among reflec-
tion components. Also, the power of the conventional ICA’s output
in the specific microphone j, Y [ j]

ICA
( fp, τ), can be written as

|Y [ j]
ICA

( fp, τ)|2 =
∣∣∣
∑

q

r(q)aj( fp, θ
(q))Nn( fp, τ)

∣∣∣2

=
∑

q

∣∣∣r(q)aj( fp, θ
(q))Nn( fp, τ)

∣∣∣2 +C2, (26)

where C2 also expresses all of cross-terms among reflection compo-
nents. Here, the directivity gain of DS-filter WT

DS( f ) is unity only
when θ equals the focus direction of DS, θU , and it is less than one
(i.e., defocused) in the other directions. This is represented by

∣∣∣WT
DS( f )a( f , θ)

∣∣∣ ≤ 1. (27)

Thus, the power of each reflection component satisfies

|WT
DS( fp)a( fp, θ)|2|r(q)Nn( fp, τ)|2 ≤ |aj( fp, θ)|2|r(q)Nn( fp, τ)|2 (28)

because |aj( f , θ)| = 1 as in Eq. (24). Using the assumption that
almost all the reflection components of Nn( fp, τ) come from around
the noise DOA and outside of θU , we can modify Eq. (28) as

|r(q)WT
DS a( fp, θ

(q))Nn( fp, τ)|2 < |r(q)aj( fp, θ
(q))Nn( fp, τ)|2. (29)

If the interference with each reflection component is arising statis-
tically at random, it can be expected that C1 in Eq. (25) and C2 in
Eq. (26) become statistically the same. Therefore, the following
equation holds:

∑
q

|r(q)WT
DS a( fp, θ

(q))Nn( fp, τ)|2 +C1

<
∑

q

|r(q)aj( fp, θ
(q))Nn( fp, τ)|2 +C2. (30)

This equation can be replaced by the following,

|WT
DS Â( fp)Nn( fp, τ)|2 < |Y [ j]

ICA
( fp, τ)|2. (31)

From Eqs. (21) and (31), the following relation is approved:

E
[
|YBSSA( fp, τ)|2

]
< E
[
|WT

DS( fp)Â( fp)Nn( fp, τ)|2
]
< E
[
|Y [ j]

ICA
( fp, τ)|2

]
.

(32)

This relation indicates that the power of BSSA output is less than
that of ICA output in the permutation-arising frequency bin fp.

On the other hand, when |Y( fp, τ)|2 − β · |Z( fp, τ)|2 < 0, the re-
sultant power spectrum of BSSA is floored by flooring parameter
γ. If flooring parameter γ is sufficiently small, YBSSA( fp, τ) becomes
smaller than the error component of the permutation.

From the above-mentioned fact, we can conclude that BSSA is
permutation-robust rather than ICA. However, we must pay attention
to the setting of over-subtraction parameter β. Although the over-
sized over-subtraction parameter β can suppress the permutation per-
fectly, such a parameter reduces not only noise components but also
the target component in other innocent (non-permuted) frequency
bins. Therefore, we should use an appropriate over-subtraction pa-
rameter β because such an oversized parameter causes an artificial
distortion, so called musical noise.

4. EXPERIMENTS AND RESULT
4.1. Evaluation of permutation-robustness in BSSA
First, we compare ICA and BSSA on the basis of noise reduction
rate (NRR) [3], which is defined as the output signal-to-noise ra-
tio (SNR) minus the input SNR in dB. In this experiments, we as-
sume that source separation is performed perfectly except for the
permutation which is generated artificially in the randomly selected
frequency bins. We increase permutation-arising frequency bins to
evaluate the robustness against the permutation problem. Figure 2
illustrates a layout of the reverberant room in this experiment. We
use speech signals (male and female) as an original speech, and input
SNR is set to 0 dB at the array. Target signal is male’s speech, noise
is female’s speech, and noise direction is 50 degrees. A four-element
or eight-element array with the interelement spacing of 2 cm is used,
and DFT size is 512. Over-subtraction parameter β is 1.2 and floor-
ing coefficient γ is 0.0. Figure 3 shows the resultant curve of NRRs
of ICA and BSSA with increasing permutation-arising frequency
bins. From these results, we can confirm that NRR of BSSA out-
performs that of ICA even if the percentage of permutation-arising
increases. These results obviously indicate that BSSA involves the
permutation-robust structure.

Although the previous NRR results are positive for BSSA, one
might speculate that the sound distortion increases; certainly we can
see the musical noise in the resultant output of the propose BSSA.
Unfortunately we cannot provide distortion assessment results due
to the limitation of the paper’s space, but instead we show results
of speech recognition which is the final goal of BSSA, where the
separated sound quality is totally considered. We compare ICA and
BSSA on the basis of word accuracy under the same experimental
conditions. We use an eight-element array, and we generate 5% or
10% permutations artificially. We use 46 speakers (200 sentences) as
the original source and we use male’s speech (1 sentence) as an in-
terference noise source. Noise direction is 50 or 80 degrees. Speech
recognition task is 20 k-word dictation, acoustic model is phonetic
tied mixture [7], we use 260 speakers (150 sentences / 1 speaker)
as training data for acoustic model, and we use Julius [7] 3.5.1 for
speech decoder. Figure 4 shows the word accuracy under each con-
dition. From these results, we can see that the word accuracy of the
proposed BSSA is superior to that of ICA under all conditions.
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Fig. 2. Layout of reverberant room used in experiment which simu-
lates permutation problem.
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4.2. Speech recognition test in real environment
Next, we conduct real BSS experiments, and compare DS, ICA, the
conventional single-channel spectral subtraction [6] cascaded with
ICA (ICA+SS), and BSSA in a real environment. In this scenario,
there is not only the permutation problem but also target or noise
estimation error because ICA cannot work perfectly. Figure 5 illus-
trates a layout of reverberant room in this experiment. Conditions
and task for speech recognition are the same as those of Sect. 4.1.
We use male’s speech which was recored in the real environment as
an interference including background noise. Input SNR is set to 10
dB. Besides, over-subtraction parameter β is 2.0 and flooring param-
eter γ is 0.2. Moreover, we use DOA-based permutation solver [3]
in ICA. Figure 6 shows NRR and the word accuracy in each method.
These results reveal that the word accuracy of the proposed BSSA
are remarkably superior to those of the conventional methods. It
should be mentioned that the proposed BSSA can still outperform
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Fig. 5. Layout of reverberant room for speech recognition test in real
environment.
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Fig. 6. (a) Result of noise reduction rate in real separation, and (b)
word accuracy score of each method.

the simple combination of existing ICA and SS. This is a promis-
ing evidence that the proposed BSSA has an applicability to noise
(including permutation) robust speech recognition.

5. CONCLUSIONS
In this paper, we theoretically and experimentally show that BSSA is
a blind source extraction method with permutation-robust structure.
BSSA is permutation-robust because over-subtraction and defocus-
ing properties can reduce the adverse effect of permutation problem.
It was confirmed that NRR and word accuracy of BSSA overtake
those of the conventional ICA in the experiment which simulates
permutation problem artificially. Moreover, we revealed that the
word accuracy of the proposed BSSA exceeds those of DS, ICA and
ICA+SS in the real environment.
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