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Previous work has indicated that a limitation on the low fre-
quency performance of a circular microphone array for holographic
sound field recording is phase mismatch between the microphones in
the array. At low frequencies these variations become more signifi-
cant than at mid-range and high frequencies because the high order
phase mode responses are lower in amplitude. This paper investi-
gates the possibility of performing a “self” calibration of a micro-
phone array. The basis of the calibration is to estimate the loca-
tion of one or more sources using mid-range frequencies and to use
this source location information to perform correction to the array at
low frequencies. This of course implies that the calibration is per-
formed in a relatively anechoic environment, since multipath effects
at widely differing frequencies are uncorrelated. Initial results con-
firm that a significant improvement in the array response is possible
using this approach.

Index Terms— Microphones, Acoustic Arrays, Calibration, Phase
Estimation

1. INTRODUCTION

Microphone arrays offer the possibility of recording the sound at not
just a single point, but an entire sound field [1, 2]. Most methods of
storage and subsequent reproduction of the sound field information
involve transforming the microphone data into spherical or circular
harmonics. Circular microphones are particularly suited to recording
of two-dimensional sound fields, as they allow recording of the hor-
izontal spherical harmonics with fewer microphones than required
for a three-dimensional array [3].

Previous work [4] has examined construction of polar responses
from a sound field by the use of a regular circular microphone array.
It was shown that for an N element array, themth term of the sam-
pled phase mode response to a plane wave from azimuth angle φi is
given by

rm(k, φi) =
1

N

N−1X
n=0

zn(k, φi − φn)e
−jmφn (1)

where zn(k, φi − φn) is the response of microphone n located at
angle φn to a plane wave of wave number k with angle of arrival φi.

This response can be expressed in terms of its Fourier series
decomposition, as

zn(k, φi) =

∞X
q=−∞

an(k, q)e
−jqφi

�

an(k, q) =
1

2π

Z 2π

0

zn(k, φi)e
jqφi dφi (2)

If all the microphone elements are identical, then an(k, q) =
a(k, q), and so the sample response becomes

rm(k, φi) =
1

N

N−1X
n=0

∞X
q=−∞

a(k, q)e−jq(φi−φn)e−jmφn

=

∞X
q=−∞

a(k, q)e−jqφi

"
1

N

N−1X
n=0

ej(q−m)φn

#

=
∞X

l=−∞

a(k,m− lN)e−j(m−lN)φi . (3)

The last line follows from the fact that the microphone elements are
equally spaced (φn = 2πn/N ) and so the term in square brackets
is equal to 1 for q = m − lN for any integer l, and is zero other-
wise. If a(k,m− lN) is small for any values of l other than zero, we
then obtain the important result that the low order polar responses
of the array are independent of the polar responses of the individual
microphones. For most microphone patterns this will be true up to
some frequency. Beyond this frequency, we say that aliasing has oc-
curred. The complex value a(k, 0)will in general vary depending on
the frequency, and so equalisation across frequency will be required.

The number of modes we are able to accurately estimate from
the measured data is an important measure of the effectiveness of the
array for holographic sound field recording. This in effect means that
we wish the approximation a(k,m − lN) � a(k, 0) to be true for
as large a value ofm as possible. However, we have the conflicting
requirement that a(k,m) must be large for as large a value of m as
possible.

A prototype array was constructed using 16 cardioid microphones,
and the complex polar response of each measured as the array was
rotated through 360◦.

The conflicting requirements are clearly illustrated in Fig. 1. At
high frequencies (e.g., 8000 kHz), the response is not small form−
lN = ±16. This results in aliasing for all modes. At low frequen-
cies (e.g., 125 Hz) the response is small form− lN = ±16, and so
the zeroth order mode (m = 0) can be reliably constructed. How-
ever, for first order terms (m − lN = ±1), the response is quite
small; -7 dB compared to the zeroth order. The second order term is
smaller still at -30 dB, and so higher order modes are considerably
attenuated compared to those at mid-range frequencies.

Example omnidirectional, first order and second order responses
are shown in Fig. 2. The aliasing at high frequencies is very appar-
ent. Unfortunately there is little that can be done about this short
of increasing the number of microphones (at additional cost) or de-
creasing the radius of the array (at the cost of low frequency SNR).

Fig. 2 also shows the low amplitude and the distortion of the
second order response at low frequencies. Here some improvements
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Fig. 1. Normalised Fourier transforms of the complex responses at
125 Hz (top), 2 kHz (middle), and 8 kHz (bottom).

may be possible. The analysis of [4] suggests that this distortion is
caused by differences in the phase response between the elements of
the array. These differences become more significant at low frequen-
cies as the high order modes decrease in amplitude.

The conjecture motivating the research in this paper is that the
difference between the low frequency responses may be estimated
from certain signals. In this way the microphone array can “self-
calibrate”. In particular, the idea is to estimate the direction of arrival
of a source or sources at mid-range frequencies, where the phase
difference is not so significant. If the sources are also generating
signals at low frequencies, the location information can be used to
estimate the phase difference to each of the microphones, and hence
the phase error can be calculated.

2. MODE ERROR CRITERION

The polar plots shown in Fig. 2 illustrate the problem in generating
second order modes at low frequencies. However, for purposes of
comparison it is desirable to have some sort of error measure. The
measure used here is a simple squared error comparison with the
ideal mode response. The ideal phase mode response is of the form

Omni cos(φ) sin(2φ)

0.36 0.15 0.02

0.44 0.20 0.04

0.17 0.17 0.17

0.10 0.12 0.11

Fig. 2. Example raw polar amplitude responses from measured mi-
crophone data. 125 Hz (top row), 250 Hz (second row), 2 kHz (third
row), and 8 kHz (bottom row). The maximum amplitude is the num-
ber at the top right of each response plot.

[4]

rm,s(k, φi) = βm(k)e−jmφi (4)

If we have measurements rm(φi) of this response at a discrete set of
angles φi, then the total normalised error is given by

η =

NX
i=1

˛̨̨̨
ejmφi − rm(φi)

βm

˛̨̨̨2
(5)

For the purposes of providing an error measure, we are free to choose
a value of βm that minimises this error. (This ignores frequency
continuity, which will become important when equalisation of the
responses across frequency is performed, but at present we are only
concerned with phase correction at individual frequencies.) We there-
fore equate to zero the derivative of this expression with respect to
the complex conjugate β∗m of βm, and choose

βm =

PN

i=1 rm(φi)r
∗

m(φi)PN

i=1 e
−jmφir∗m(φi)

(6)

This value of βm can then be used in (5) to obtain the error measure.
This can then be used to evaluate the effectiveness of any proposed
calibration scheme.

3. MICROPHONE MODEL

Implicit in the concept of calibration of the microphone array in this
paper, is the notion that there is some small number of parameters
(ideally one parameter) which characterise each element of the ar-
ray. To derive a calibration method, we thus need a model for the
elements. The model should be capable of being decomposed into
two components

I  142



Real component of complex amplitude

Im
ag
in
ar
y
co
m
po
ne
nt

0.04

0.02

0.02

0

0
Real component of complex amplitude

Im
ag
in
ar
y
co
m
po
ne
nt

0.04

0.04

0.02

0.02

0

0-0.02 -0.02

(a) (b)

Fig. 3. Overlaid raw complex responses for 16 microphone elements
at 125 Hz (a) and at 2 kHz (b).

1. the parameter or parameters required for calibration, which
encapsulate the differences between the elements, and

2. the complex amplitude of the element, after the simple parametri-
sation has been removed. Ideally this should be approxi-
mately the same for the manufacture of an entire batch of
microphone elements.

Some effort was put into producing an electrical equivalent model
of each element based on physical considerations. The idea behind
this approach is that the differences between each element must ul-
timately arise from some physical difference in their construction or
arrangement. Some useful references for development of these mod-
els are [5] and [6]. However, since the elements are active, having
a J-FET amplifier stage, element differences may also be due to the
electronics. For this paper it was decided to use an empirical model
for the elements.

3.1. Element Differences for Calibration

The complex polar responses for each of the 16 elements are over-
laid in Fig 3 for a low and a mid-range frequency. The responses
at low frequencies, where we most which to correct for differences,
suggests that a simple rotation is all that is necessary to compensate
for microphone differences. A complex rotation, which includes an
amplitude scaling as well as a rotation may achieve better alignment,
but at the cost of an additional real parameter to estimate.

We first investigate whether this model can be used to obtain
better first and second order harmonics at low frequencies, in the
situation where all of the response information is available.

Suppose then that we have 2 complex vectors x and y, repre-
senting respectively the measured response and an ideal response.
We wish to find a complex scaling a so that ax and y are closest in
some sense. For simplicity we again choose for our alignment metric
the sum of the squared error between the two vectors, or

ηn = ‖anxn − y‖2 (7)

Equating the derivative with respect to a∗n to zero, we obtain

an =
xH

n y

xH
n xn

(8)

If we instead use a strict rotation, ejθn with no scale adjustment,
and equate the derivative with respect to θn to zero, we obtain

ejθn =
xH

n y

‖xH
n y‖ (9)

Continuing with a squared loss metric, we may wish to find a
“central” vector y which produces the lowest total loss summed over
all of the N elements of the array, or

η =

NX
n=1

ηm =

NX
n=1

‖y − xnan‖2 (10)

Taking the derivative with respect to y we obtain

y =
1

N

NX
n=1

xnan (11)

or y =
1

N

NX
n=1

xne
jθn (12)

Iteration between (8) and (11), or between (9) and (12) rapidly con-
verges to a self consistent solution. If scaling is allowed, then the
vector of an must be scaled at each iteration

a← a

√
N

‖a‖ (13)

This is to prevent the iterative process minimising the squared error
by simply making the scaling factor smaller at every stage.

3.2. Single Element Model

Fig. 4 shows the amplitude and phase response of the microphones
presented as functions of cos(φi − φn). (These are actually the av-
eraged responses for several elements after alignment as discussed
in Section 3.1.) Both the magnitude and phase appear to be approxi-
mately linear functions of cos(φi−φn). A least squares fit is shown
as the line in each case. The error minimisation for this line was
weighted so that values for which the amplitude is small contributed
smaller error. The linearity suggests that the first order microphone
model presented in [4] is at least approximately correct, and this is
the model we use. The complex response for this model (for waves
of elevation θ = π

2
) is given by

zm(k, φi − φn) = [α+ (1− α) cos(φi − φn)]

× exp [jkR cos(φi − φn)] (14)

where α is 1
2
for an ideal cardioid, and R is the radius of the array.

At low frequencies a linear approximation for the phase is evidently
not such a good approximation. There is also a loop in the response,
indicating that angle of maximum amplitude of the response does not
align with the maximum amplitude at other frequencies. Correcting
this is beyond the scope of this paper. What is perhaps more sig-
nificant, and is relatively easy to incorporate into the model, is the
fact that at low frequencies, the phase difference between sources
separated by 180◦ is greater than kR. At 2 KHz, the array radius
can be estimated from the phase gradient as 77.5 mm, which is very
close to the physical radius of 77.8 mm. At 125 Hz, the phase gra-
dient corresponding to the least squares line shown in Fig. 4 leads
to an estimated radius of 116 mm. This is because each of the ele-
ments has a phase response which varies with incidence angle, and
the phase is not only due to the time difference of arrival at the ele-
ment. It is simple to incorporate this into our single element model
by using a “virtual” radius which is a function of frequency, rather
than the true radius.
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Fig. 4. Mean amplitude and phase responses for 125 Hz (top row)
and 2 kHz (bottom row), each presented as a function of cos(φi −
φn) along with a weighted linear fit.

Omni cos(φ) sin(2φ)

0.35 0.15 0.02

0.42 0.20 0.04

Fig. 5. Example raw polar amplitude responses from measured mi-
crophone data. 125 Hz (top row), 250 Hz (bottom row). The maxi-
mum amplitude is the number in the top right of each response plot.
This should be compared to the upper half of Fig. 2.

4. ELEMENT DIFFERENCE MODEL VERIFICATION

The approach of applying a rotation to each of the measured com-
plex responses of the array elements, as described in Section 3.1 was
performed. Even though the algorithm for applying the rotation was
not specifically optimised for minimising the error for any particular
mode, a reduction in the error is apparent. This is shown by compar-
ing Fig. 5 with the upper half of Fig. 2.

The errors for the modes, using the measure discussed in Sec-
tion 2 for both rotation and complex rotation are shown in Table 1.
It is apparent that the error, particularly for the second order modes,
can be considerably reduced using this simple phase calibration ap-
proach.

5. SELF CALIBRATION

A maximum likelihood method of beam forming was used at 2 kHz
to estimate the location of various single sources:

bφi = max
φi

˛̨̨
bz

H(φi)
˛̨̨2

(15)

where b is the measured response to a single source, and each el-
ement of z is given by (14). Incidentally, it was found that using

f/Hz Omni cos(φ) sin(φ) cos(2φ) sin(2φ)

Raw 125 0.028 0.081 0.106 0.447 0.593
250 0.096 0.065 0.059 0.159 0.259

Rotate 125 0.029 0.083 0.076 0.303 0.485
250 0.072 0.054 0.042 0.141 0.157

Rotate 125 0.018 0.057 0.049 0.236 0.276
& scale 250 0.065 0.027 0.045 0.141 0.112

Calibration 125 0.025 0.055 0.063 0.376 0.250
250 0.070 0.045 0.057 0.127 0.090

Table 1. Error for each of several modes for raw data, and data with
an optimal simple rotation or an optimal complex rotation applied to
each element. The last two rows are the result for a complex rotation
estimated from a calibration signal.

the true radius of the array did not necessarily minimise the error
variance. The measured response of the source at a lower frequency
was then divided by the ideal model response to obtain a complex
calibration factor for each of theN microphone elements. The error
obtained with these calibrations was found to depend on the actual
location of the source, but one example is shown in the last two lines
of Table 1. The error can be seen to be comparable to that obtained
for the “perfect” rotation angle. A more sophisticated approach than
that outlined here combines the information from several calibration
angles to obtain superior calibration parameter estimates.

6. CONCLUSION

It has been shown that estimation of the second order modes of a
sound field using a microphone array is difficult at low frequencies.
This is primarily because the magnitude of the modes is very small.
This results in any variations in the element properties becoming
very significant. It has been further shown that these variations can
be simply accounted for by a simple rotation or complex rotation,
and in this way the usable low frequency range of the array can be
extended. The rotation can be estimated from real signals, provided
that the location information derived at mid-range frequencies can
be applied to low frequencies. Further work must be performed to
establish reliable methods of estimation of these parameters in real
environments.
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