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ABSTRACT
Source localization employing time-differences-of-arrival has been
employed for many applications. The accuracy of source localiza-
tion is limited by the errors in the time differences of arrival esti-
mation as well as microphone position calibration errors. Because
a microphone position error will affect multiple time differences of
arrival, correlation between these quantities will be introduced. This
work presents a new mathematical framework in which we quan-
tify the localization performance of a microphone array in which the
microphone positions are subject to such errors.

Index Terms— Acoustic source localization, Acoustic arrays,
Time-differences-of-arrival

1. INTRODUCTION

Advances in array processing and sensor fusion have motivated the
study and implementation of microphone arrays for source localiza-
tion. In military applications, microphone arrays have been deployed
together with sensors such as the geophone for parameter security
purposes and intruder detection [1]. The use of microphone arrays
in commercial applications facilitates source localization involving
automatic video steering in videoconferencing for example [2].

The most popular method for source localization is the use of
time-differences-of-arrival (TDOA) between the microphones [3].
The TDOA between any two microphones defines a hyperbolic func-
tion with the microphones corresponding to the foci of the hyper-
bola. Using several TDOA estimates, the intersection of these hy-
perbolae provides the source location. In practice, this intersection
point can be achieved by solving a set of nonlinear equations re-
lating to the source and the known microphone positions. The use
of Taylor series expansion is commonly employed to linearize the
set of nonlinear equations. Starting from an initial position, an it-
erative gradient descent is applied to improve the position estimates
provided that the initialization point is close to the true solution. Al-
ternative methods for source localization are presented in [4].

The main challenges in acoustic localization are TDOA errors,
calibration errors and the design of array configurations. A pop-
ular method of TDOA estimation is the generalized cross correla-
tion (GCC) [5] which estimates the time index corresponding to
the peak of the cross-correlation function. Several factors influ-
encing the accuracy of peak estimation include multipath effects,
signal-to-noise ratio and wind turbulence. The presence of multipath
may result in a loss of resolution and multiple peaks in the cross-
correlation [5]. These challenges have motivated much research in-
terests especially in room environments where reverberation can be
significant [6]. An adaptive solution for TDOA estimation is also
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presented in [7]. In addition, source localization algorithms require
the knowledge of microphone positions and many localization al-
gorithms assume the knowledge of these locations through calibra-
tion [8]. Microphone positioning calibration errors inevitably re-
duce the localization accuracy. Array configuration is also an im-
portant consideration when deploying microphone arrays. Due to
the miniaturization of microphones, there is increasing flexibility on
how microphones can be placed in, for example, personal digital
assistants (PDAs) and laptops for commercial applications. These
configurations include the uniform linear array (ULA) and circular
array. The cross-dipole array has also been implemented for vehicu-
lar and aerial target localization [9].

The aim of this work is to quantify positioning errors through
a mathematical framework taking into account (a) errors associated
with time-of-arrival (TOA) that may arise from positioning errors
of the microphones and (b) cross-correlation peak estimation errors.
We also compare the performances of array configurations using the
above framework given the constraints of having a fixed number of
microphones and aperture size. Unlike previous publications such
as [10], our analysis do not assume a diagonal error covariance ma-
trix. To address this, we first express a mathematical relationship be-
tween TDOA and localization errors in Section 2. In Section 3, we
present the TDOA error model and show how we derive the max-
imum likelihood estimator of the position deviation and its covari-
ance matrix. This allows us to compute the localization accuracy
given the position of the microphones and compensate for any errors
that may arise such as described above. In Section 4, we validate
our analysis through simulation and compare the positioning errors
of the cross-dipole and circular microphone arrays. In addition, we
provide comparisons between the analytical and simulated results.
We conclude this paper in Section 5.

2. RELATIONSHIP BETWEEN TDOA ERRORS AND
POSITION DEVIATION

We consider the case of a single source and an array of M micro-
phones. If h0 and mp denote D × 1 vectors containing the coordi-
nates of the source and the pth microphone respectively, the differ-
ences between the coordinates of the source and the pth microphone
can then be expressed as

dp = h0 − mp . (1)

Denoting t0,pq as the TDOA between the pth and qth microphone, we
can then express

t0,pq = fpq(h0) = c−1
h
‖dp‖2 − ‖dq‖2

i
(2)

for 1 ≤ p < q ≤ M where ‖ · ‖2 is the l2-norm operator while c
is the speed of sound (∼ 345 ms−1) and fpq(h0) is the nonlinear
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function of the source position h0 defined by (2). Hence, there are a
total of N = 0.5M(M − 1) distinct values of t0,pq .

Let the coordinates of a point relative to h0 be h0+hwhere h is
an D × 1 vector containing deviations from the source position h0.
Defining the superscript T as the transposition operator, the TDOA
measurements at position h0 + h can be expressed as t0 + t where
t0 = [t0,12, t0,13, . . . , t0,(M−1)M ]T is a N × 1 vector containing

TDOAs defined in (2) and t = [t12, t13, . . . , tM(M−1)]
T is a vector

containing deviations of TDOA measurements from source position
h0. Defining

e = [e12, e13, . . . , eM(M−1)]
T

= t0 + t − f(h0 + h) (3)

as a vector containing measurement errors where f(·) is the nonlin-
ear function defined in (2) for all p, q, the TDOA measurements at
position h0 + h can be approximated using first order Taylor series
expansion about the position h0 giving

t0 + t = f(h0 + h) + e (4)

≈ f(h0) + c−1Jh + e (5)

= t0 + c−1Jh + e

⇒ t = c−1Jh + e (6)

where
J = [j12, j13, . . . , j(M−1)M ]T (7)

is the scaled Jacobian matrix of dimension N ×D with column vec-
tors jpq containing elements that are partial derivatives of the t0,pq

with respect to h0. We can decompose J by first defining an D×M
matrix G

G = [g1,g2, . . . , gM ] . (8)

where each D × 1 vector gp = (h0 − mp)/‖dp‖2, p = 1, . . . , M ,
is a unit vector pointing towards the source from microphone p. The
scaled Jacobian matrix is then

J = KGT
(9)

where the N ×M matrixK performs subtraction operation between
vector pairs gp and gq and hence each row of K contains only two
non-zero entries: +1 and -1. Using (8) and (9), column vectors in J
correspond to jpq = gp − gq .

2.1. Structure and properties of K

The N × M matrix K is of the form

K =

2
6664

1 −1 0 · · · 0
1 0 −1 · · · 0
.
.
.

. . .
. . .

. . .
.
.
.

0 · · · · · · 1 −1

3
7775 . (10)

We note that each column of K contains exactly M − 1 non-zero
entries corresponding to the M − 1 equations that involve the cor-
responding microphone. For any pair of columns, only one row is
non-zero entry in both columns and it has opposite signs in the two
columns. It follows from this that all diagonal elements of KT K
equal M − 1 and that all off-diagonal elements equal -1, i.e.,

KT K = MI − 11T
(11)

where 1 denotes an M × 1 vector of 1’s and I denotes an M × M
identity matrix. It is also convenient to note that

K1 = 0 ⇒ KKT K = K(MI − 11T ) = MK . (12)

2.2. Maximum likelihood estimator

We wish to estimate the position deviation h. We assume that the
TDOA measurement error vector e has a normal distribution with
zero mean and N × N covariance matrix Re = E{eeT }, i.e., e ∼
N (e; 0,Re) where E{·} is defined as the expectation operator. The
probability of e given h is then p(e|h) = N (t − c−1Jh; 0,Re).

We then obtain the maximum likelihood estimate bh by maximizing
p(e|h) with respect to h and setting the differential to zero giving

0N×1 =
d

dh
(t − c−1Jh)T R−1

e (t − c−1Jh)

= −2c−1JT R−1
e (t − c−1Jbh)

⇒ bh = c[JT R−1
e J]−1JT R−1

e t (13)

where 0N×1 is the D × 1 null vector and bh is the maximum likeli-
hood estimator of h. We are interested in determining the statistical
properties of positioning errors, i.e., the variance of the deviations
from the true position h0. This can be obtained by setting h = 0D×1

giving t = e with a PDF of N (e;0,Re). The covariance matrix ofbh is then given by

R
bh = bhbhT

= c2(JT R−1
e J)−1JT R−1

e ReR
−1
e J(JT R−1

e J)−1

= c2(JT R−1
e J)−1 , (14)

and hence our aim is to compute bh and R
bh in order to quantify

the localization performance of microphone arrays given the micro-
phone positions subject to errors.

3. TDOA ERRORMODEL

We assume that the TDOA errors, e, arise from two zero mean
sources (a) an independent TOA error at each microphone, vm, m =
1, . . . , M and (b) an independent TDOA evaluation error, bn, n =
1, . . . , N , for each of the N equations. The independent TOA errors
encompass both microphone positioning errors that may arise due to
calibration errors and also errors due to sound propagation delay un-
certainties. The TDOA evaluation errors are a function of the signal
and noise spectra and lower bounds are given in [11]. The N errors
due to (a) and (b) can then be expressed jointly as

e = b + Kv , (15)

where b = [b1, . . . , bN ]T and v = [v1, . . . , vM ]T . If we take the
covariance matrices of b and v to be σ2

b I and S = diag{v} respec-
tively we obtain

Re = E{eeT } = σ2
bI + KS2KT ,

and hence we do not assume that Re is a diagonal matrix.

3.1. Inverse covariance of TDOA errors

To compute R−1
e for (13) and (14), we employed the matrix inver-

sion lemma [12] giving,

R−1
e = σ−2

b I − σ−2
b KS

ˆ
I + σ−2

b SKT KS
˜−1

SKT σ−2
b

= σ−2
b I − σ−2

b KS
ˆ
σ2

b I + MS2 − ssT
˜−1

SKT

= σ−2
b I − σ−2

b KS
ˆ
A−1 − ssT

˜−1
SKT (16)

where we have used (11), S1 = s and

A =
h
σ2

b I + MS2
i−1

. (17)
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The inversion of A−1−ssT in (16) can be achieved by invoking the
matrix inversion lemma giving

[A−1 − ssT ]−1 = A +
AssT A

1 − sT As
, (18)

from which we then obtain

R−1
e = σ−2I − σ−2

b KS

»
A +

AssT A

1 − sT As

–
SKT . (19)

3.2. Equal TOA error variances

For the remainder of this section we consider the particular case
where S = σsI. This allows us to make the following simplifica-
tions

A =
`
σ2

b + Mσ2
s

´−1
I ,

AssT A

1 − sT As
=

σ2
s(σ2

b + Mσ2
s)−211T

1 − Mσ2
s(σ2

b + Mσ2
s)−1

= σ−2
b σ2

s(σ−2
b + Mσ2

s)−111T ,

R−1
e = σ−2

b I − σ2
sσ−2

b K
ˆ
A

+σ−2
b σ2

s(σ2
b + Mσ2

s)−111T
˜
KT

= σ−2
b I − σ2

sσ−2
b (σ2

b + Mσ2
s)−1KKT (20)

where we have employed the relationship K1 = 0. We note that the
computation of (20) does not require any matrix inversion and unlike
previous works, we have not assume independent TDOA errors.

3.3. Maximum likelihood estimator using error model

The maximum likelihood estimator bh in (13) can be found by first
noting that

JT R−1
e = GKT ˆ

σ−2
b I − σ2

sσ−2
b (σ2

b + Mσ2
s)−1KKT ˜

= G
ˆ
σ−2

b − Mσ2
sσ−2

b (σ2
b + Mσ2

s)−1˜
KT

= (σ2
b + Mσ2

s)−1JT . (21)

Substituting (21) into (13), we obtain the maximum likelihood esti-
mator of the deviation from source position

bh = c
ˆ
JT J

˜−1
JT t , (22)

which is independent of σb and σs.

3.4. Covariance of deviation using error model

The covariance matrix of the deviation from true sensor position
given by (14) can be simplified using (21) as

R
bh = c2(JT R−1

e J)−1

= c2(σ2
b + Mσ2

s)
ˆ
JT J

˜−1
. (23)

It is now apparent that the computation of bh andR
bh is limited by the

condition number of JT J denoted by χ[JT J]. We note that each row
of J consists of the differences between two unit vectors pointing
towards the source from two microphones as described by jpq =
gp − gq . Consider the case where all unit vectors point toward the
same direction hence giving gp = gq , ∀p, q. In this situation, J = 0
and consequently JT J is singular hence giving poor estimates. Such
a situation exists, for example, when the source is at the endfire of a
linear array.

Table 1. Coordinates of microphones used in simulations

microphone cross-dipole circular

1 0.0, 0.0 0.35, 0.35

2 0.5, 0.0 -0.23, 0.45

3 0.0, 0.5 -0.49, -0.08

4 0.0, -0.5 -0.08, -0.49

5 -0.5, 0.0 0.45, -0.23

Fig. 1. Mean bearing errors for (a) cross-dipole and (b) and circular array
obtained using Taylor series approximation (-◦-) and “Lsqnonlin” simulation
(-×-).

4. SIMULATION RESULTS

We now provide simulation results to validate our derivations and
compare the performances of array configurations in a planar case

where D = 2. We estimated source positions h0 + bh for 5000 trials
using twomethods (a) minimizing ‖e‖2 in (3) using the lsqnonlin
function in MATLAB and (b) minimizing ‖e‖2 in (6) by means of (22).
We constrained the number of microphones to 5 which then allow us
to consider both the cross-dipole and circular arrays. For fair com-
parison, all microphones lie within a circle of radius 0.5 m. Table 1
shows the coordinates of the microphones for each configuration. In
these experiments, the standard deviation of the TOA for each mi-
crophone is set to σs = 5.79 × 10−6 which corresponds to 2 mm
in microphone positioning error. The independent calculation error
is set to σb = 2.08 × 10−5 s. We analyzed the performance of each
array by positioning the source at angular positions every 18 degrees
for both ranges 2 and 4 m.

Figure 1 (a) and (b) show respectively the mean bearing errors
for the cross-dipole and circular array obtained using Taylor series
approximation denoted by (-◦-) and Lsqnonlin denoted by (-×-).
It can be seen that the mean range errors obtained using the first order
Taylor series expansion are close to that of the simulated errors. We
also note that the mean bearing errors are within 0.02◦ for both the
cross-dipole and circular array configuration.

Figure 2 shows the standard deviations of the bearing errors for
(a) the cross-dipole and (b) the circular array. As before, results
are obtained using Taylor series approximation denoted by (-◦-) and
Lsqnonlin denoted by (-×-). In addition, we computed the the-
oretical standard deviation for the bearing errors using (23) denoted
by (-•-). These results show no significant differences between re-
sults obtained using Taylor series approximation and simulation for a
source range of 2 m and hence we see that the linearized theory pro-
vides a good estimate of the position error uncertainty. The Taylor
series approximation over estimates the standard deviation to within
0.04◦ and 0.005◦ for a source range of 4 m for the cross-dipole and
circular array respectively. Comparing Figs. 1 and 2, we note that
the standard deviations of the bearing errors dominate over the mean
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Fig. 2. Standard deviation of bearing errors for (a) cross-dipole and (b)
circular array obtained using Taylor series approximation (-◦-), “Lsqnonlin”
simulation (-×-) and Eqn. (23) (-•-).

Fig. 3. Mean range errors for (a) cross-dipole and (b) circular array obtained
using Taylor series approximation (-◦-) and “Lsqnonlin” simulation (-×-).

bearing errors for both array configurations considered. Comparing
Figs. 2 (a) and (b), the standard deviation of the bearing errors for
the circular array is lower than that for the cross-dipole array.

Figure 3 show the mean range errors for the (a) cross-dipole and
(b) circular array. As before, we note the closeness between the sim-
ulated results and results generated using the first order Taylor series
approximation given in (5) for a source range of 2 m. The Taylor se-
ries approximation gives an approximate zero mean range error for
both array configurations but results obtained using Lsqnonlin
shows that the range is in fact consistently overestimated. We also
note that the circular array provides lower mean range errors com-
pared to the cross-dipole array.

Figures 4 (a) and (b) show respectively the standard deviation
of range errors for the cross-dipole and circular array. Similar to
Fig. 2, we included the analytical estimate given by (23). We ob-
serve that the standard deviation of range errors increases with range
for both the cross-dipole and circular array. Results for the Taylor se-
ries approximation showed that the standard deviation for the range
errors is lower than that using the Lsqnonlin function for a source
range of 4 m. In addition, we note that the circular array has a lower
standard deviation for the range errors than the cross-dipole array
configuration.

5. CONCLUSION

We presented a new mathematical framework to evaluate the perfor-
mance of source localization for acoustic arrays. This analysis do
not assume independent TDOA errors between the microphones and
we evaluate the mean and standard deviations of positioning errors
by employing the matrix inversion lemma. It has been shown that
the errors between the true source position and estimated position
for both Taylor series expansion and simulation increase with range
for both the cross-dipole and circular arrays. Simulation results have

Fig. 4. Standard deviation of range errors for (a) cross-dipole and (b) cir-
cular array obtained using Taylor series approximation (-◦-), “Lsqnonlin”
simulation (-×-) and Eqn. (23) (-•-).

verified our analysis and have shown that the Taylor series expan-
sion provides a good estimate of the positioning error uncertainty.
We observe from these results that although their best performances
are similar, the worst-case performance of the circular array is much
better than that of the cross-dipole array.
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