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ABSTRACT
In most microphone array applications, it is essential to

localize sources in a noisy, reverberant environment. It has

been shown that computing the steered response power(SRP)

is more robust than faster, two-stage, direct time-difference of

arrival methods. The problem with computing SRP is that the

SRP space has many local maxima and thus computationally-

intensive grid-search methods are used to find a global max-

imum. Grid search is too expensive for a real-time system.

Several papers have addressed this issue. In this paper we pro-

pose using stochastic region contraction(SRC) to make com-

puting the SRP practical. We discuss one important SRP

method, computing it from the phase transform (SRP-PHAT),

review SRC, and show the computational saving. Using real

data from human talkers, we show that SRC saves computa-

tion by more than two orders of magnitude with almost no

loss in accuracy.

Index Terms – Optimization methods, microphones, ar-

rays, acoustic position measurement

1. INTRODUCTION

An open problem for large-aperture microphone arrays is to

obtain the location of sound sources in the focal area using

the data acquired from selected microphones. In this paper,

we are concerned with algorithms in which all sources are

assumed to be effectively modeled as point sources and that

nothing is known a priori from previous location estimations;

full search is required, rather than updating a tracker.

The pros and cons of many proposed location algorithms

have been discussed in earlier work [1, 2, 3, 4, 5]. For real-

time systems in realistic environments, only a few locators, all

of them depending on time-difference-of-arrival(TDOA) es-

timation, have stood the test of practical implementation and

satisfactory performance. Currently, a two-stage (microphone-

signal-to-TDOA-vector, spatial search of the TDOA vector)

generalized cross correlation (GCC)-based technique called

”LEMSalg” is being used in our Huge Microphone Array(HMA)

real-time system [6]. This and similar two-stage algorithms

are fast but rely on making first-stage TDOA decisions, which

are often quite poor estimates when SNRs decrease, causing

the second-stage search to fail. Our research [6, 2] and that

of others [7] has shown that a one-stage method whose func-

tional is the steered-response power(SRP) is more robust than

a two-stage algorithm. However, computational cost is a real

issue because the SRP space to be searched has many local

maxima. Thus, a simplex or gradient technique, such as used

in the spatial search with TDOA’s, is not feasible.

In this paper, we present a method that makes the com-

putation of a typical and proven-robust one-stage algorithm,

SRP-PHAT, [2], practical. A global-maximum-finding algo-

rithm, called stochastic region contraction(SRC), is applied

and tested experimentally using our real system. We have

seen no loss in accuracy, yet the computation is usually re-

duced by 2-3 orders of magnitude.

2. STEERED RESPONSE POWER(SRP) USING THE
PHASE TRANSFORM (SRP-PHAT)

For time frame n, The SRP, Pn(�x), is the real-valued func-

tional for the 3-D spatial vector �x obtained by steering a delay-

and-sum beamformer. The hypothesis is that high maxima in

Pn(�x) will occur at the actual set of k point sources at loca-

tions x
(n)
s (k) even under very noisy and highly reverberant

conditions [6]. The high maxima form the set x̂
(n)
s (k). For

example for a single source, the location estimate, x̂n
s (1), is

x̂n
s (1) = argmax

�x
Pn(�x). (1)

Given, mi(t) is the signal from microphone i in an M mi-

crophone system, then the SRP for some finite-length frame

of length T is defined as

Pn(�x) ≡
∫ (n+1)T

nT

|
M∑
i=1

wimi(t − τ(�x, i))|2 dt (2)

where wi is a weight and τ(�x, i) is the direct time of travel

from location �x to microphone i. It has been shown[8] that

an SRP may be exactly computed by summing the general-

ized cross-correlations for all possible pairs of the set of mi-

crophones. Expanding Equation 2, going to the frequency do-

main using more general, frequency-dependent weights W ∗
l (ω)
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and using Parseval’s theorem we obtain,

Pn(�x) =
M∑

k=1

M∑
l=1

∫ ∞

−∞
(3)

Wk(ω)W ∗
l (ω)Mk(ω)M∗

l (ω)ejω(τ(�x,l)−τ(�x,k)dω.

A combined weighting function is defined,

Ψkl(ω) ≡ Wk(ω)W ∗
l (ω). (4)

The integral is seen to be the cross power spectrum for micro-

phones k and l with the direct waves in alignment. Noting the

elements summing to Pn(�x) form a symmetric matrix with

fixed energy terms on the diagonal, the part of Pn(�x) that

changes with �x is defined as P ′
n(�x), i.e.,

P ′
n(�x) ≡

M∑
k=1

M∑
l=k+1

∫ ∞

−∞
(5)

Ψkl(ω)Mk(ω)M∗
l (ω)ejω(τ(�x,l)−τ(�x,k)dω.

The phase transform (PHAT) [1] is an especially effec-

tive weighting of a GCC [9] for finding a TDOA from speech

signals in highly-reverberant environment. Weights are the

inverse of the magnitudes of the frequency components, i.e.,

Ψkl(ω) ≡ 1
|Mk(ω)M∗

l (ω)| . (6)

The process is thus to explore P ′(�x) over the whole fo-

cal volume and ultimately find the set of one or more dis-

tinct maxima x̂n
s (k). The calculation of any particular point

of P ′(�x) will be called a functional evaluation(fe). For the

SRP-PHAT functional, we want to determine a point-source

location in the room that gives the maximum value of P ′
n(�x).

Instead of a grid-search, which requires fe’s on a fine grid

throughout the room, we advocate using stochastic region con-

traction(SRC) to find the global maximum.

3. STOCHASTIC REGION CONTRACTION (SRC)

First presented in [10], the basic idea of the SRC algorithm

is, given an initial rectangular search volume containing the

desired global optimum and perhaps many local maxima or

minima, gradually, in an iterative process, contract the origi-

nal volume until a sufficiently small subvolume is reached in

which the global optimum is trapped (the uncertainty voxel
(volume Vu). The contraction operation on iteration i is based

on a stochastic exploration of the P ′
n(�x) functional in the cur-

rent subvolume. While this can also be done using a refining

grid-search, which ideally can have a computational advan-

tage of up to 4, SRC features 1) a simple way to program

and parameterize the optimization procedure, 2) a more ro-

bust procedure against an early wrong decision, and 3) an al-

lowance of the optimum being on the continuum. The first

step is to determine the number of random points, J0, that

Fig. 1. 2D example of SRC: The surface is P ′(�x). j is the

iteration index. The rectangular regions show the contracting

search regions

need to be evaluated to ensure that one or more is likely to

be in the volume, Vpeak, of higher values (than the rest of

the focal volume) surrounding the global maximum of P ′
n(�x).

see, e.g. Figure 1. Unfortunately, Vpeak is not easy to deter-

mine and in our data changes substantially as the source is far-

ther from the microphones. However, if Vroom is the original

search volume, we can estimate the number of fe’s needed to

ensure that the probability of missing Vpeak altogether is less

than a given percent (Table 1).

Vpeak
Vroom

0.1 0.01 0.001 0.0001

P(miss Vpeak)
1% 44 459 4603 46050

0.1% 66 688 6905 69,075
0.01% 88 917 9206 92,099

Table 1. Number of fe’s required for three probabilities of

missing Vpeak and four values of the ratio
Vpeak

Vroom
.

Defining Ji as the number of random points evaluated for

iteration i, Ni, the number of points used to define the new

source volume, Vi+1, having a rectangular boundary vector
�Bi+1 ≡ [xmax(i + 1) xmin(i + 1) ymax(i + 1) ymin(i +
1)zmax(i+1)zmin(i+1)], and I the number of iterations, and

FEi the total number of fe’s evaluated as of iteration i,with

Φ the maximum number of fe’s allowed to be computed, the

SRC algorithm for finding the global maximum is,

1. Initialize iteration: i = 0
2. Set initial parameters: J0, N0 and V0 = Vroom.
3. Calculate P ′

n(�x) for Ji points.
4. Sort out the best Ni � Ji points.
5. Contract the search region to the smaller region Vi+1, �Bi+1

that contains these Ni points.
6. IF: Vi+1 < Vu, or FEi > Φ and Vi+1 < T1Vu, where

T1 is a parameter (about 10); determine x̂n
s (i∗), I = i,

STOP, KEEP RESULT.
7. ELSE IF FEi > Φ, STOP, DISCARD RESULT.
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8. ELSE: Among the Ni points, keep a subset Gi points

that have values greater than the mean, μi of the Ni

points.

9. Evaluate Ji+1 new random points in Vi+1.

10. Form the set of the Ni+1 as the union of Gi and the

best Ni+1 − Gi points from the Ji+1 just evaluated.

This gives Ni+1 high points for iteration i + 1.

11. i = i + 1. GO TO STEP 5.

There are several variants of SRC for selecting the pa-

rameters Ji and Ni. We have found it very effective for our

problem to set a fixed value for Ni based on experimentation

as shown for our problem in Figure 2. Here we see that a

value of N = 100 gives the best results with the lowest cost

for all cases. That is, let Ni ≡ N , we define SRC-I, II and III.
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Fig. 2. Performance of SRC-I as a function of parameter N
for four different source locations

• SRC-I. Let Ji be that number of random fe’s needed

find Ni −Gi points greater than μi. Guarantees mono-

tone increasing μi. Use finite value of Φ.

• SRC-II. Let Ji be that number of random fe’s needed

to find Ni − Gi points higher than the minimum of the

full set Ni. μi increases for almost all iterations. Use

finite value of Φ.

• SRC-III. Fix Ji = J . Keep the highest Ni −Gi points

for each iteration. Does not guarantee monotone in-

creasing μi. Set Φ → ∞.

4. COMPUTATIONAL COST

SRP-PHAT requires frequency-domain processing to do the

phase transforms. For M microphones used in a locator, the

computation of the P ′
n(�x) requires Q = M(M − 1)/2 phase

transforms. For a DFT size of L, counting additions and mul-

tiplications as separate arithmetic operations,

1. DFT: A real FFT per microphone: M × 5
2L log2 L.

2. Spectral Processing: Phase transform, cross-power spec-

trum: ≈ 10QL .

3. IDFT: Q real IFFT’s or 5
2QL log2 L .

In the current HMA system we use M = 24 microphones

for a locator, implying Q = 276. A reasonable compro-

mise among sufficient data, worst-case TDOA, and potential

movement of the source is L = 2048. This totals 22.6 × 106

ops/frame or 22.6mo/f (million operations per frame).

The focal area for the HMA is 4 m x 1 m x 6 m. To search

the entire focal area at 1cm resolution, implying Vu = 1cm,

requires 2.4×107fe’s. The following steps are required to get

a value for each of the grid points, �x:

1. Obtain the M(= 24) Euclidean distances, dn
i (�x),

from �x to each microphone. Cost: 3 mults, 5 adds, 1

square root(≈ 12ops). Cost: 20ops/mic or 480ops/fe.

2. Determine Q(= 276) TDOA’s. τn
ij(�x) = (dn

i (�x) −
dn

j (�x))C where C is the inverse off the speed of sound.

Cost: 3ops/pair or 728ops/fe.

3. Sum up the PHAT values. Requires a multiplication,

addition and truncation to discretize each TDOA value,

a memory access and one more addition for the sum

itself. Cost: 5ops/pair or 1380ops/fe.

Thus we need 480 + 728 + 1380 = 2588ops/fe which

implies a cost for grid-search,

Grid-Search Cost = 24 × 106(2588)
= 63, 113mo/frame (7)

Note that the signal-processing cost is tiny in comparison to

that of the grid search. In our real time system, we ide-

ally would like to make a decision each 25.6ms, implying a

2.46TF machine! Therefore the grid-search method is not a

practical way of doing SRP-PHAT in real-time.

Using SRC requires the same signal processing, but sig-

nificantly reduces the number of fe’s needed to find the global

optimum. As will be shown experimentally, the number of

fe’s varies with source position in a typical room. For SRC-

I and SRC-II, it also depends on the number of frames dis-

carded by the limit on the number of fe’s. The number of

frames discarded for our data is small; 1 of 105, 2 of 114, 4

of 87 and 4 of 69 for sources 1-4 respectively.

SRC does require a few small additional computations.

These are 1) determine each random point, about 21ops/fe

and 2) sort to get the best Ni+1 − Gi points, which has neg-

ligible cost. Neither of these additions really affects the com-

putational load appreciably.

5. EXPERIMENTAL RESULTS

The system, and room with a T60 = 0.45s, that we used in

our experiments has been described in [6]. A human talker,

approximately facing the locator microphones, repeated the

first four seconds of the ”rainbow passage” from four loca-

tions as shown in Figure 3 with the distances and SNR’s in-

dicated. It was shown in [6] that SRP-PHAT with grid search
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significantly outperformed a current real-time(less expensive)

algorithm, (LEMSalg) especially under low SNR conditions.

However, the SRP-PHAT functional does have some erro-

neous global maxima for some frames when the noise is very

high.
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Fig. 3. Top View of the Array, Showing Source Locations and

Panels (Locator uses Microphones on Panels H, I, J, K)

The arrows indicate the orientation of the talkers and the

SNR’s are for background noise only.

Results are given in Table 2 for accuracy and the aver-

age number of fe’s used for LEMSalg and grid search as well

as for SRC-I, SRC-II and SRC-III. Performances for LEM-

Salg and grid search are absolute and show overall correct-

ness. For the grid search, as SNR decreases there are more

frames in which the global maximum is not correctly placed.

Performances of the SRC algorithms are relative to the per-
formance of the grid search, i.e., Performance will be listed

as 100% if the SRC implementation achieved the global max-

ima everywhere grid-search did.

The parameters for SRC were determined experimentally

using the focal volume of the room as 4mx1mx6m or Vroom =
24m3 and, while for each source location Vpeak is different,

the worst case makes the ratio
Vpeak

Vroom
≈ 0.005. This implies

from Table 1 that a value of J0 = 3000 will err by missing the

peak volume less than 0.1% of the time. Frames of 102.4ms,

advancing each 25.6ms within the speech were used for test-

ing, and an estimate was considered an error if it were either

off by more than 5cm in x or z or 10cm in y, the vertical

dimension.
6. CONCLUSION

We have verified here that SRP-PHAT is superior, especially

under higher noise conditions, to a less costly, real-time, two-

Algorithm Source 1 Source 2 Source 3 Source 4
SNR 7.9dB 5.7dB 3.47dB 1.9dB

% Corr. # fe’s % Corr. # fe’s %Corr. # fe’s % Corr # fe’s
LEMSalg 99.1 – 96.1 – 35.9 – 43.1 –

Grid Search 100 2.4 × 107 96.6 2.4 × 107 87.8 2.4 × 107 67.3 2.4 × 107

SRC - I 100 46,646 100 49,536 100 63,262 100 72,531
SRC - II 100 50,580 99.1 50,597 97.5 74,553 98.4 61,489
SRC - III 100 14,370 99.2 144,000 100 573,000 92.2 585,000

Table 2. Performance of SRP-PHAT estimates for grid search

and three SRC parameterizations for four different locations

stage location-estimation algorithm. We have also shown that

we can reduce its large computational cost by more than two

orders of magnitude by using Stochastic Region Contraction

(SRC), thereby making the use of SRP-PHAT practical for a

real-time use – about 40 estimates per second using a 15GF

machine.

It was clear that performance varied significantly with the

SNR of the direct-wave signal at the set of microphones. Un-

der our worst-case conditions, SNR ≈ 1.9dB, it was best

to use the SRC-I algorithm to get the full accuracy of SRP-

PHAT with an computational advantage of 333:1. If the con-

ditions are less noisy such as our best case of SNR ≈ 7.9dB,

then using SRC-III gives full accuracy with a computational

advantage of 1670:1, or only needing about a 1.5GF machine

for 40 frames per second in real-time.
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