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ABSTRACT

Excessive noise in neo-natal care units and inside incubators
can have a number of detrimental effects on an infant’s
health. This paper presents a novel, audio-integrated
approach to achieving active noise control (ANC) for infant
incubators. This paper also presents the implementation of
the robust, nonlinear filtered-X least mean M-estimate
algorithm, for reducing impulsive interference in incubators.
The healthcare application is further enhanced by
integrating the “womb effect”, i.e., by using intrauterine and
maternal heart sounds, proven to be beneficial to infant
health, for masking the residual noise. A computer model
for  audio-integrated noise  cancellation  utilizing
experimentally measured transfer functions is developed for
simulations using real medical equipment noise.

Index Terms — Adaptive noise control, infant incubators,
least mean M-estimate algorithm, womb effect, nonlinear
adaptive algorithm.

1. INTRODUCTION

This paper explores an innovative healthcare application of
ANC systems, a noise-free infant incubator as shown in
Figure 1. Control of low-frequency noise has been a source
of increasing interest in healthcare, especially for sensitive
medical applications like the infant incubator. According to
the American Academy of Pediatrics [1], high noise levels
are prevalent in neonatal intensive care units (NICU) and
thus, in incubators, causing auditory damage to pre-term
babies as, their auditory systems are the last to mature.

Figure 1. Infant incubator.
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Incubator noise is typically broadband and is generated
by equipment such as pumps, fans, and heating machinery.
It can be broadly characterized into three types: broadband
equipment hum, equipment hum interspersed with high-
amplitude random impulses and equipment hum
interspersed with low-amplitude periodic impulses. High
amplitude impulses (40-50 dB higher than background) are
caused mainly due to human activity like banging of metal
cabinet doors below the incubator or closing of incubator
portholes and low amplitude impulses (10 dB higher than
the background) are caused due to machinery that aid in
respiration [1]. Figure 2 is an example of real incubator
noise in the time domain with segments marked by impulses
due to respiratory pumps.
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Figure 2. Example waveform of incubator noise.

Section II focuses on developing a conventional ANC
system utilizing the filtered-X least mean square (FXLMS)
algorithm for cancellation of broadband noise using real
transfer functions measured from the laboratory setup.
Conventional linear adaptive algorithms however, are not
equipped to handle impulsive interference and may exhibit
degraded system performance. To enhance algorithm
performance in the presence of impulses, the
implementation of a nonlinear adaptive algorithm — the
filtered-X least mean M-estimate (FXLMM) algorithm is
discussed in Section III. This algorithm is capable of
handling random and/or periodic impulses and of
suppressing the adverse effects of these impulses for
incubator ANC application [2].

Section IV outlines the audio-integration algorithm that
utilizes the ‘womb-effect’. This integration serves two
significant purposes — it provides a potential health benefit
to infants by utilizing intrauterine sounds, as heard by the
infant and also masks the residual noise after cancellation.
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The algorithm is designed to handle interference from the
comfort audio on the performance of the ANC algorithm
and ensures that the audio is not canceled by the ANC
system. The audio interference cancellation filter also serves
as an online secondary path modeling filter.

2. ACTIVE NOISE CONTROL FOR THE
INCUBATORS

ANC is based on the principle of utilizing destructive
interference to cancel unwanted noise [3]. The FXLMS
algorithm is one of the most popular algorithms for ANC.
The block diagram of a feedforward broadband ANC system
using the FXLMS algorithm is illustrated in Figure 3, where
P(z) is the transfer function of the primary path, S(z) is the
transfer function of secondary path, and S(z) is it’s estimate.
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Figure 3. ANC system with the FXLMS algorithm [4].
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The ANC system shown in Figure 3 takes into account
the effect of the secondary-path by placing an estimate filter
in the reference signal path to the least mean square (LMS)
algorithm [4]. The experimental setup is as shown in Figure
4, which has the exact dimensions as that of the infant
incubator shown in Figure 1. One microphone is placed on
both sides of the infant’s head. The outputs from both are
mixed and analyzed by a spectrum analyzer. The canceling
loudspeaker is placed outside the incubator, which can be
seen behind the infant’s head. The secondary path from the
canceling loudspeaker to the error microphones is
commonly modeled offline using an adaptive filter with the
LMS algorithm.

Figure 4. Experimental setup of incubator.

The offline modeling is done in a unique manner to
reduce the annoyance caused due to the usage of white
noise. Pleasant natural sounds like that of water are used.
Satisfactory results of offline modeling of the secondary
path are obtained for a 128-tap adaptive filter and a step size
0f 0.09, and are shown in Figure 5. The solid line represents
the actual transfer function whereas the dotted line
represents the estimated one. As is seen, the two lines
indicate that the modeling is very close.
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Figure 5. Magnitude responses of the original and the
estimated secondary paths.

The input reference noise is taken from an incubator
noise audio file. The ANC system shown in Figure 3 is
simulated with measured P(z) and S(z). A 256-tap filter and
a step size of 0.06 are used for the adaptive noise
cancellation filter W(z). The residual noise is found to be 16
dB lower than the input on average. The plot illustrating the
spectra of noise before (ANC OFF) and after (ANC ON)
cancellation is shown in Figure 6. The next section discusses
the implementation of nonlinear FXLMM algorithm for
suppressing impulse noise.
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Figure 6. Incubator noise cancellation using audio for
offline modeling.

3. NONLINEAR ALGORITHM FOR IMPULSE
NOISE SUPRESSION

The performance of linear adaptive filters can degrade
significantly in the presence of impulse noise, thus nonlinear
algorithms are preferred to reduce the adverse effects [7].
The FXLMM algorithm is a simple and robust method that
employs the mean M-estimate error objective function [2]
[5] and is capable of performing effectively in impulsive
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environments. Consider Figure 3, the residual signal is given
as,

e(n) = d(n) = s(m) *[w" (m)x(m)] M
where w(n) = [wo(n) wi(n) . waxa(n)]" is the coefficient
vector of adaptive filter W(z) at time n, x(n) = [x(n) x(n-1)

x(n-N+1)]" is the reference signal vector at time n, s(n)
is the impulse response of the secondary-path S(z), and *
denotes linear convolution [4].

The objective of the adaptive filter #(z) is to minimize
the weighted least M-estimate function criterion
E(n)=) A"'ple(i)] where p() is the M-estimate
function’™' The weight vector w(z) is updated in the negative
direction of the gradient vector

win+1) = win) = ¥y (2)
where the objective function for the adaptive filter is as
given [2]

Irgp = Elple(ll = ple(n)] Q)

This function is minimized by updating the weight vector in
a negative direction of the gradient vector given by

W pygp(n)  dple(n)] de(n) )

vJ =
Mp ow(n) de(n) dw(n)

Let y[e(n)] be the first order partial derivative of p[e(n)], the
gradient now becomes

de(n)

Vi = vie)]
ow(n)

= yle(m)][-s(n) * x(n)]

= —qle(mle(m)[s(n) * x(m)] ®)
where the weight vector g[e(n)] = wle(n)]/e(n). Since s(n) is
the impulse response of the secondary-path, which is not
available directly, an estimate of the secondary-path S(z) is
modeled and its impulse response §(») is used.

Substituting the estimate in equation (5) we get
VI pp = —ale(m)]e(n)s(n) = x(n)]
= —q[e(n)]le(n)x' (n) (6)
Substituting equation (6) into equation (1) we get the weight
vector update equation for the FXLMM algorithm as,
W(n+1) = wn) + gle(n)le(n)x (n) )
The function p(.) is chosen as the Hampel’s three-part

redescending M-estimate function [2], which is known for
its computational simplicity. It is defined as

ple(n)] =
2
e (n)/2, 0<e(n) <&
2
Ele(n) —& /2, & <le(m)|< A,
2 2
YA +Ay) -8 /2+[§ie(n) —=8)) V2 (A =Ay), A< e(n)| <A,
g2 +Ay) - 2n, Ay < |e(n)| (8

The simulation results using the FXLMM algorithm
with comparative case studies from the FXLMS algorithm
are detailed in the following section. The FXLMM
algorithm was implemented for incubator noise interspersed
with high-amplitude random impulses (30 dB higher than

background). The impulses are at time n = 40000, 52000
and 64000 and last for a length of 100 samples. The
probabilities 0:, Oa1, and G4, for determining the threshold
were taken to be 0.05, 0.025 and 0.01, respectively, for
95%, 97.5% and 99.5% confidence that the error vector was
in the interval [§ A], [A; Ay ]and e(n) > A, respectively
[2]. A 256-tap adaptive filter was implemented for a step
size of 0.06. The learning curves for the FXLMS and
FXLMM algorithms are shown in Figure 7.
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Figure 7. Learning curves for ugxims = trxivm = 0.06.
Impulse occurred at » = 40000, 52000 and 64000.

The simulation shows that the FXLMM algorithm
behaves in an identical manner to the FXLMS algorithm
until before the impulses are encountered. The FXLMS
algorithm, however, exhibits degraded system performance
with a very high mean squared error (MSE) in the presence
of impulses. The FXLMM algorithm is found to be more
robust while handling impulses. Comparing the MSE plots
of the two algorithms shows that the FXLMM algorithm has
superior performance in the presence of impulses and is
more effective in suppressing the adverse influence of
impulse noise.

4. INTEGRATED ANC SYSTEM WITH
“WOMB” AUDIO

This section focuses on developing an algorithm that can
integrate “comfort” audio with the existing ANC system to
provide an environment conducive to good infant health and
to mask the undesired residual noise. The comfort audio
used is a combination of maternal heartbeat and other
intrauterine sounds [8]. Research has proven that playing
womb sounds showed significant differences in the
respiration rate, sleep cycle, and oxygen saturation in infants
[6]. Unfortunately, the audio signal that is added to the
output of the ANC filter, however, can act as interference to
any ANC algorithm. Hence, a method must be devised to
subtract the audio from the error signal before it is used to
update the coefficients of the adaptive filter. In Figure 8, an
adaptation of Figure 3, the comfort audio a(n) is added to
the antinoise y(n) that can be heard by the infant inside the
incubator.
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Figure 8. Block diagram of audio-integrated ANC system.
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At the acoustic summing junction, y’(n) and d(n) are
combined to produce residual error e a(n). The audio
component is subtracted from this error to provide the “true”
error e(n). It should be noted that the audio is filtered
through S(z) before it is subtracted. The error e_a(n) is
expressed in the z-domain as:

E_A(:) = D(:)S(:)[Y(2) + A(2)] )
The adaptive filter S(z) is used to cancel the audio

interference on the performance of W(z). This filter
generates

E(z) = E_A(2) +S(2)A(z) (10)
Substituting equation (9) into (10) we get
E(z) = D(2)S(2)Y() (11)

This is the “true” error which is used to update the adaptive
filter M(z2).

The main advantage of this algorithm lies in its ability
to model the secondary-path online. Online modeling of the
secondary path involves its estimation in tandem with the
operation of the ANC system. The filter is modeled through
an adaptive system identification scheme that uses comfort
audio as the reference signal and treats the secondary path as
the unknown system.

A simulation model of Figure 8 is set up for a 256-tap
adaptive filter W(z) with a step size of 0.06 as before. The
secondary path is estimated using a 128-tap filter and a step
size of 0.095. The ANC system is allowed to converge, and
the error signal reaches a steady state before the audio is
added. Figure 9 illustrates that the audio integration
algorithm allowed proper convergence of the adaptive filter.

We can summarize the advantages of the audio
integrated ANC system as follows: (i) it provides a pre-natal
ambience, thus nurturing the health of the infant. (ii) it is
successful in masking residual error and in preventing the
audio from interfering with the algorithm updation. (iii) the
secondary path is modeled online, making the system more
responsive to changes in the environment. (iv) the audio
integration does not require additional hardware, existing
speakers and power amplifier of the ANC system can be
used making it cost-effective.
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Figure 9. Learning curves with and without the integrated
audio algorithm.
5. CONCLUSIONS

In this paper, an innovative application of ANC systems, the
infant incubator was presented. Real transfer functions from
a laboratory setup were used to develop a computer model
for simulation. Simulation results showed an average
cancellation of 16 dB. This paper also presented the
development and implementation of the robust, nonlinear
FXLMM algorithm for reducing impulsive interference. The
function of the ANC system was further enhanced by using
an algorithm that integrated comfort audio and modeled the
secondary path online. The comfort audio provided a
beneficial environment for the infant’s growth and masked
the residual noise from the ANC system.
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