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ABSTRACT

Rotating machines such as diesel engines, cutting machines,
fans, etc. generate sinusoidal noise signals that may be suc-
cessfully reduced by narrowband active noise control (ANC)
systems. In this paper, performance analysis of such a typi-
cal ltered-X LMS (FXLMS) based narrowband ANC system
equipped with an online secondary path modeling subsystem
is conducted in detail. First, difference equations governing
the dynamics of the FXLMS for secondary source synthesis
and the LMS for secondary path estimation are derived in
terms of convergence of both mean and mean square. Steady-
state expressions for mean square error (MSE) as well as the
remaining noise power are then developed in closed forms.
Extensive simulations are performed to demonstrate the va-
lidity of the analytical results.

Index Terms— Narrowband active noise control, Online
secondary path modeling, Performance analysis, Convergence,
Steady-state mean square error (MSE)

1. INTRODUCTION
Rotating machines such as diesel engines, cutting machines,
fans, etc. generate noise signals that can usually be mod-
eled as sinusoidal signals in additive noise. Suppressing or
reducing the noise signals, especially their lower frequency
portion, is very important in various engineering and envi-
ronmental systems. Narrowband active noise control (ANC)
systems are designated to remove or mitigate these annoying
noise sources [1]-[7].
A large number of ANC systems have been proposed in

the literature, and some of them have been implemented in
real-life applications [3]. Usually, the nite-impulse-response
(FIR) lters adapted by a ltered-X least mean square (FXLMS)
algorithm or its variants are applied [3]. Other techniques us-
ing recursive least squares (RLS) and Kalman ltering based
algorithms have also been developed for many ANC systems
[6, 3], which generally provide better noise reduction perfor-
mance at the expense of more computational cost. In most
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ANC systems, the secondary path is assumed to be known a
prior, which is estimated in some way in advance [3]. Re-
cently, much attention has been paid to the online secondary
path modeling techniques which allow the secondary path to
be estimated in an online fashion such that the secondary path
is identi ed and utilized while the system is in operation [3].
The conventional narrowband ANC systems are effective

in suppressing sinusoidal noise sources in many real-life ap-
plications [3]. Fig.1 shows such a conventional ANC system
[3, 4] with online secondary modeling using auxiliary noise.
Statistical properties of this ANC system with known sec-
ondary path has been analyzed in some detail [8]. But the
same ANC system equipped with secondary path modeling
has not been investigated. Two adaptive subsystems in Fig.1,
one synthesizing the secondary source and the other estimat-
ing the secondary path, are cascaded in a way that makes it
dif cult to assess the performance of the entire system.
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Fig. 1 Block diagram of a conventional narrowband ANC
system with secondary path modeling (the i-th channel).

In this paper, performance analysis of the FXLMS-based
ANC system with online secondary path modeling is per-
formed in detail. Difference equations governing the dynam-
ics of the system are developed in terms of estimation errors
between the discrete Fourier coef cients (DFCs) estimates of
the secondary source and their optimal values which assure
perfect cancellation for all the primary sinusoids being tar-
geted, and between the secondary path estimate and its ac-
tual value. The steady-state estimation mean squared errors
(MSEs) as well as the remaining noise power are also de-
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rived in closed forms. Stability of the system is also discussed
where possible. Extensive simulations are performed to illus-
trate the validity of the analytical results. The formulation of
the problem is now provided below.
The primary noise signal in Fig. 1 is given by

p(n) =
q∑
i=1

{ai cos(ωin) + bi sin(ωin)}+ vp(n) (1)

where q is the number of frequency components of the sinu-
soidal signal, ωi is the frequency of the i-th component, vp(n)
is a zero-mean additive white Gaussian noise with variance
σ2
p. The signal frequencies may be identi ed in a regression
fashion based on a synchronization (sync) signal derived from
a non-acoustical sensor like a tachometer.
The secondary source generated by the synthesis subsys-

tem is expressed by

yo(n) =
q∑
i=1

yi(n)=
q∑
i=1

{
âi(n)xai

(n) + b̂i(n)xbi
(n)

}
(2)

xai(n) = cos(ωin), xbi(n) = sin(ωin) (3)

The FXLMS algorithm for DFC estimates is given by

âi(n + 1) = âi(n) + μie(n)x̂ai
(n) (4)

b̂i(n + 1) = b̂i(n) + μie(n)x̂bi
(n) (5)

where

e(n) = p(n)− S(z)y(n), y(n) =
q∑

k=1

yk(n)− d1(n) (6)

x̂ai(n) = Ŝ(z, n)xai(n) = α̂i(n)xai(n) + β̂i(n)xbi(n) (7)
x̂bi

(n) = Ŝ(z, n)xbi
(n) = −β̂i(n)xai

(n) + α̂i(n)xbi
(n) (8)

S(z) =
M−1∑
j=0

sjz
−j , Ŝ(z, n) =

M̂−1∑
j=0

ŝj(n)z−j (9)

α̂i(n) =
M̂−1∑
j=0

ŝj(n) cos(jωi), β̂i(n)=
M̂−1∑
j=0

ŝj(n) sin(jωi)(10)

and μi is a step size parameter for the i-th channel. S(z)
is the true secondary path, Ŝ(z, n) is an estimate of S(z) at
time instant n, which is obtained online by the LMS-based
secondary path estimation subsystem. The parametersM and
M̂ are the system orders of the true and estimated secondary
paths, respectively, and d1(n) is an auxiliary white noise with
zero mean and variance σ2

d1
. The LMS algorithm for the sec-

ondary path estimation is given by

ŝm(n + 1) = ŝm(n) + μs,me0(n)d1(n − m) (11)

e0(n) = e(n)− yd(n), yd(n) = Ŝ(z, n)d1(n) (12)

where μs,m is a step size parameter for them-th coef cient.

2. PERFORMANCE ANALYSIS

Using (2) and (7)-(10) in e(n) yields

e(n) ≈
q∑
i=1

{
[ai − (αiâi(n)− βib̂i(n))]xai

(n) (13)

+[bi − (βiâi(n) + αib̂i(n))]xbi
(n)

}

+vp(n) +
M−1∑
j=0

sjd1(n − j)

where âi(n−j) ≈ âi(n), b̂i(n−j) ≈ b̂i(n) for j = 1, 2, · · · ,
M − 1 are used to facilitate and simplify the analysis that fol-
lows. Based on extensive numerical simulations it is revealed
that the above does not affect the accuracy of analysis signif-
icantly even for relatively fast adaptation (see simulation re-
sults in Section 3). Obviously, from (13), the optimum DFCs
that assure a perfect cancellation of all the sinusoids satisfy

[
ai,opt
bi,opt

]
=

[
αi −βi
βi αi

]−1 [
ai
bi

]
(14)

αi =
M−1∑
j=0

sj cos(jωi), βi =
M−1∑
j=0

sj sin(jωi) (15)

De ne the estimation errors of DFCs as

εai(n) = ai,opt − âi(n), εbi(n) = bi,opt − b̂i(n) (16)

Eventually, the error signal reduces to

e(n) ≈
q∑
i=1

{[αiεai
(n)− βiεbi

(n)]xai
(n) (17)

+[βiεai
(n) + αiεbi

(n)]xbi
(n)}+ vp(n) +

M−1∑
j=0

sjd1(n − j)

A. Convergence in the mean sense

Using the above error signal expression in the FXLMS recur-
sions (4), (5) and the LMS update (11), and taking ensemble
average (E[·]) yields

E[εak
(n + 1)] (18)

=
{
1− 1

2
μk(αkE[α̂k(n)] + βkE[β̂k(n)])

}
E[εak

(n)]

−1
2

μk(αkE[β̂k(n)]− E[α̂k(n)]βk)E[εbk
(n)]

E[εbk
(n + 1)] (19)

=
{
1− 1

2
μk(αkE[α̂k(n)] + βkE[β̂k(n)])

}
E[εbk

(n)]

−1
2

μk(−αkE[β̂k(n)] + E[α̂k(n)]βk)E[εak
(n)]

E[εs,m(n + 1)] = (1− μs,mσ2
d1
)E[εs,m(n)] (20)

I  106



where

E[α̂k(n)] =−
M̂−1∑
j=0

E[εs,j(n)] cos(jωk) +
M̂−1∑
j=0

sj cos(jωk)(21)

and E[β̂k(n)] can be calculated similarly. The estimation er-
ror of the secondary path is de ned byE[εs,m(n)] = E[ŝm(n)
−sm]. Clearly, in the mean sense convergence of the LMS
is independent of the FXLMS and is guaranteed as long as
0 < μs,m < 2/σ2

d1
. The cosine and sine DFC errors will con-

verge independently if Ŝ(z, n) becomes very close to its true
value. A stability bound for μk may be obtained by letting the
absolute eigenvalues of (18) and (19) equal to unity, as

μk,bound(n) = (22)

4
n

αkE[α̂k(n)] + βkE[β̂k(n)]
o

n
αkE[α̂k(n)] + βkE[β̂k(n)]

o2

+
n
−αkE[β̂k(n)] + E[α̂k(n)]βk

o2

which is the same as the so-called −90◦ condition [9]. In the
above derivations, xai

(n) and xbi
(n) are treated as pseudo-

random noises [1, 7].

B. Convergence in the mean square sense
Putting (16) into (4) and squaring both sides, one gets

E[ε2
ak
(n + 1)] = E[ε2

ak
(n)] (23)

−2μkE[εak
(n)e(n)x̂ak

(n)]
Ik(n)

+μ2
kE[e2(n)x̂2

ak
(n)]

Kk(n)

After some technical manipulations, one gets

Ik(n) = γak
(n) (24)

+
1
2
{αkE[α̂k(n)] + βkE[β̂k(n)]}E[ε2

ak
(n)]

+
1
2
{−βkE[α̂k(n)] + αkE[β̂k(n)]}E[εak

(n)]E[εbk
(n)]

where

γak
(n) = E

⎡
⎣εak

(n)
M−1∑
j=0

sjd1(n − j)x̂ak
(n)

⎤
⎦

= −1
2

μk

M−1∑
m=1

[{E[α̂k(n)]E[α̂k(n − m)] cos(mωk)

−E[α̂k(n)]E[β̂k(n − m)] sin(mωk)

+E[β̂k(n)]E[α̂k(n − m)] sin(mωk)

+E[β̂k(n)]E[β̂k(n − m)] cos(mωk)}

×
M−1∑
j1=0

M−1∑
j2=0

sj1sj2σ2
d1

δ(m + j1 − j2)] (25)

where δ(·) is a Dirac delta function. It has been found that the
evaluation of (25) affects the analysis accuracy considerably.
This is due to the fact that the correlation between εak

(n)

and
∑M−1

j=0 sjd1(n − j)x̂ak
(n), seemingly negligible, is sur-

prisingly signi cant such that neglecting this results in large
discrepancy between analysis and simulations.
Next, after some lengthy manipulations, one gets

Kk(n) = σ2
p +

M−1∑
j=0

s2
jσ

2
d1

+
1
2

E[α̂2
k(n)] +

1
2

E[β̂2
k(n)] (26)

+
3
8

E[α̂2
k(n)]E[(αkεak

(n)− βkεbk
(n))2]

+
1
4

E[α̂2
k(n)]

q∑
i=1,i �=k

E[(αiεai
(n)− βiεbi

(n))2]

... (omitted due to space limitation)

where E[α̂2
k(n)], E[β̂2

k(n)], E[α̂k(n)β̂k(n)] may be properly
evaluated (details omitted). Following along the same lines,
similar difference equations can be derived forE[ε2

bk
(n)]. The

difference equations for the secondary path estimation errors
are derived as follows

E[ε2
s,m(n + 1)] = {1− 2μs,mσ2

d1
+ 3σ4

d1
μ2
s,m}E[ε2

s,m(n)]

+μ2
s,mσ4

d1

M̂−1∑
j=0,j �=m

E[ε2
s,j(n)] + μ2

s,mσ2
pσ2

d1
(27)

+
1
2

μ2
s,m

q∑
i=1

{(α2
i + β2

i )(E[ε2
ai
(n)] + E[ε2

bi
(n)])}σ2

d1

Now, the mean and the mean square senses convergences as
well as the steady-state properties of the system may be eval-
uated by solving the difference equations (18)-(20), (23) and
(27) simultaneously, even though they are highly nonlinear.
Stability bounds tighter than (23) for the step size parame-
ters can also be determined numerically by grid search. But
closed-form expressions are infeasible due to nonlinearity.

C. Steady-state MSE expressions
When the system reaches its steady state, all the mean es-
timation errors will converge to zeros, as can be proved and
deduced from (18)-(20). We have shown thatE[ε2

ak
(n)]|n→∞

is identical to E[ε2
bk
(n)]|n→∞ (proof omitted). Now, let

E[ε2
ak
(n)]|n→∞=Jk(∞), E[ε2

s,m(n)]|n→∞=Js,m(∞) (28)

The steady-state MSEs and the remaining noise power are
eventually derived as follows

Jk(∞) = μkηk (29)

Js,m(∞) =
μs,m(1 + σ2

d1
φs)(σ2

p + ξ)
2− μs,mσ2

d1

(30)

E[e2(∞)] = ξ + σ2
p +

M−1∑
j=0

s2
jσ

2
d1

(31)

where
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ηk = Rk(∞) +
1

2
(σ2

p +

M−1X
j=0

s2
jσ

2
d1)

„
1 +

φsσ
2
p

α2
k + β2

k

«
(32)

+

(
φs(σ

2
p +

M−1X
j=0

s2
jσ

2
d1) + (α2

k + β2
k + φsσ

2
p)

)
ξ

2(α2
k + β2

k)
+

φsξ
2

2(α2
k + β2

k)

ξ = A/B (33)

A =

qX
k=1

μk(α2
k + β2

k)Rk(∞) +
1

2
(σ2

p +

M−1X
j=0

s2
jσ

2
d1)

×
qX

k=1

μk(α2
k + β2

k) +
1

2
φsσ

2
p(σ2

p +

M−1X
j=0

s2
jσ

2
d1)

qX
k=1

μk

B = 1 − 1

2
φsσ

2
p

qX
k=1

μk − 1

2

qX
k=1

μk(α2
k + β2

k)

−1

2
φs(σ

2
p +

M−1X
j=0

s2
jσ

2
d1)

qX
k=1

μk

φs =
ρ

1 − ρ
, ρ =

M̂−1X
m=0

μs,m

2(1 − μs,mσ2
d1

)
(34)

It may be concluded that 1) the MSEs of DFCs and sec-
ondary path, (29) and (30), are both approximately propor-
tional to their step size parameters if the adaptation is suf -
ciently slow, but these MSEs are related to each other in a
very complicated way through variables ξ and φs which are
determined by the step sizes, the signal parameters and the
secondary path, and 2) the remaining noise power consists of
three parts; remaining frequency components due to the mis-
adjustment of the two subsystems, the variance of additive
noise vp(n), and the power contributed by the auxiliary noise
d1(n).

3. SIMULATIONS
Extensive simulations are performed to demonstrate and show
the validity of the derived difference equations and steady-
state MSE expressions. Very good agreements are observed
between analytical results and simulations. A representative
comparison between theory and simulation is given in Fig.2.

4. CONCLUSIONS
In this paper, the conventional FXLMS-based narrowband ANC
system with LMS online secondary path modeling has been
investigated in detail. Simulations are conducted to show the
validity of the analytical ndings that signi cantly enhance
our understanding of the system’s behavior.
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Fig. 2 Comparisons between theory and simulations (signal
frequency: 0.10π, 0.20π, 0.30π; a = [2.0 1.0 0.5]T , b =
[−1.0 − 0.5 0.1]T ; uniform step sizes: μi = 0.005, μs,m =
0.002; σp = 0.10, σd1 = 0.50;M = M̂ = 11, 100 runs).
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