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ABSTRACT
This paper proposes a way of modelling the time-varying spectral
energy distribution of musical instrument sounds. The model con-
sists of an excitation signal, a body response lter, and a loss lter
which implements a frequency-dependent decay. The three parts are
further represented with a linear model which allows controlling the
number of parameters involved. A method is proposed for estimating
all the model parameters jointly, taking into account additive noise.
The method is evaluated by measuring its accuracy in representing
33 musical instruments and by testing its usefulness in extracting the
melodic line of one instrument from a polyphonic audio signal.

Index Terms— Music, modeling, least square methods, Viterbi
decoding.

1. INTRODUCTION

This paper proposes a way of representing the timbre of pitched mu-
sical instruments. More speci cally, the aim is to construct a model
for the time-varying spectral energy distribution of sounds produced
by a certain instrument. There are many uses for such models, in-
cluding the recognition, coding, and synthesis of musical sounds.

By far the most widely used approach to modeling spectral en-
ergy distributions are Mel-frequency cepstral coef cients (MFCCs).
Although these have several desirable properties due to their sim-
plicity and perceptual and statistical properties, here we propose a
more structured approach which leads to a better modeling accu-
racy for the diverse sound production mechanisms encountered in
musical instruments. MFCCs and other “direct” ways of encoding
the spectral shape have two aws that are addressed here: it is hard
to combine a good frequency resolution with pitch invariance, and
secondly, some aspects of sound spectra are better described as a
function of harmonic index instead of frequency, for example odd
harmonics being stronger in certain wind instruments [1].

As a starting point here we adopt the source- lter model of sound
production, where “source” represents a vibrating object such as a
guitar string, and “ lter” refers to the resonance structure of the rest
of the instrument, which colors the produced sound. This framework
has been used for decades in speech coding [2] and sound synthesis,
but has not been properly adopted in recognition and classi cation
problems. A good review of the source- lter modeling work in in-
strument acoustics can be found in [3]. Here we do not stick to any
exact physical interpretation of the model, but the goal is just to have
a generic, compact, and accurate model for musical sounds.

For the sake of completeness, a frequency-dependent decay is
included in the model. A method is proposed for estimating jointly
the source, lter, and the decay parts. Pitch invariance is achieved by
taking the fundamental frequency (F0) of the sounds into account ex-
plicitly: a guiding principle is that information about the instrument
body response and other factors is obtained only at the positions of

the harmonic partials which “sample” the instrument timbre at the
corresponding frequencies. Joint estimation of the source signal and
the lter has been previously studied in speech processing, but typi-
cally with very different assumptions [4].

The proposed method is evaluated by measuring its accuracy in
representing 33 different musical instruments. Also, we evaluate its
usefulness for auditory stream formation, which refers to the task of
separating sounds from a polyphonic signal and classifying consec-
utive sounds into streams associated with a certain sound source.

2. SIGNAL MODEL

An observed discrete-time signal y(m) = s(m)+n(m) is assumed
to consist of a clean sound s(m) and additive i.i.d. Gaussian noise
n(m) ∼ G(n(m); 0, σ2

n). In the frequency domain, this can be writ-
ten as

Yt(f) = St(f) + Nt(f), (1)
where Yt(f) is the complex-valued Fourier spectrum of y(m) in
time frame t. For convenience, we describe the signal model using a
continuous-valued frequency variable f .

The spectrum of s(m) is further broken into its magnitude and
phase parts, St(f) = |St(f)|ei∠St(f). The magnitudes are modeled
as

|St(fh)| = γX(h)B(fh)Lt(fh)Et(fh) (2)

where fh ≈ hF , h = 1, . . . , H is the frequency of the hth over-
tone of a sound with fundamental frequency F .1 Note that |St(f)|
is modeled only at the positions of the harmonics and is assumed
zero elsewhere. That is, the model addresses only the periodic com-
ponent of the sound. The scalar γ denotes the overall gain of the
sound, X(h) denotes levels of the harmonics at a vibrating source
(“excitation”), B(fh) represents the frequency response of the in-
strument body (“ lter”), and L(fh) is a loss lter which models the
frequency-dependent decay of transiently-excited sounds and is near
to zero for continuously-excited sounds. The frame counter t is reset
to zero at the onset of each tone. Et(fh) represents modeling error.

The phase spectrum ∠St(f) of s(m) is not modeled. This is
because the phase relationships of different partials are often so ir-
regular (varying from one tone to another) that it is dif cult to learn
a meaningful structure for them.

The problem addressed in this paper is to learn such X(h), B(f),
and L(f) that all sounds emitted by the instrument can be approxi-
mated using (2) with as little perceptual distortion as possible; min-
imising Et(fh) in a certain sense. In the following, we consider the
spectrum |St(f)| on a decibel scale. That is, we write (2) as

S
(t)
dB (fh) = γdB + XdB(h) + BdB(fh) + tLdB(fh) + E

(t)
dB (fh) (3)

1The polyphonic case is discussed in Sect. 5.
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Fig. 1. Basis functions of XdB(h) found using PCA. The amount of
data variance explained by each basis is shown on top of the panels.

where S
(t)
dB (f) = 10 log10(|St(f)|2), and similarly for the other

terms. Avoiding the logarithm of zero is discussed later.
The harmonic levels XdB(h), body response BdB(f), and loss

lter LdB(f) are further represented with a linear model so that the
number of free parameters can be controlled:

XdB(h) =

CxX
i=1

ξixi(h), (4)

BdB(f) =

CbX
j=1

βjbj(f) and LdB(f) =

C�X
k=1

λk�k(f).

This parametrises the model so that the Cx + Cb + C� parameters to
be estimated (per instrument) are the weights ξi, βj , and λk which
de ne XdB(h), BdB(f) and LdB(f), respectively.

The basis functions xi(h), bj(f), and �k(f) can be chosen in
many ways. In practice, it is useful to let the basis functions bi(f)
and �i(f) to be identical and to choose them in a way that leads
to a roughly constant resolution on a critical-band (CB) frequency
scale. This is achieved by letting bi(f) consist of triangular band-
pass responses that are distributed uniformly on a CB scale (fCB =
21.4 log10(0.00437f + 1)) and overlap 50% with their neighbours.

Choice of the basis functions for XdB(h) is not so obvious. To
nd xi(h), we collected musical sounds from 33 musical instru-

ments (as detailed in Sect. 6), measured the dB-levels of the rst
32 harmonics in each sound and performed PCA for this data. Elim-
inating the effect of BdB(f) from the sounds prior to the PCA was
found unnecessary. This is due to the fact that the effect of BdB(f)
partly averages out when F0s of the sounds vary and the positions of
the overtones move with respect to BdB(f).

Figure 1 shows the rst eight basis functions xi(h) found us-
ing PCA. As can be seen, the principal components are close to the
cosine basis but, interestingly, give a better resolution for the lower-
order harmonics and tend to lump together higher-order partials.

3. OBSERVATION NOISE

This section describes how the levels S
(t)
dB (fh) of partials h = 1, . . . , H

in frames t = 0, 1, . . . are extracted from noisy input signals y(m).
The data is then used to learn the instrument model later on. To es-
timate S

(t)
dB (fh), we need to analyze the statistics of the power spec-

trum |Yt(k)|2 which consists of the clean sound and noise. Note that
now we consider discrete spectra with index k. The spectrum Yt(k)
is calculated by Hamming-windowing a time frame, zero-padding it
to four times its length, and by applying the Fourier transform.

Given that the noise n(m) is Gaussian in the time domain, the
real and imaginary part of the Fourier coef cients Nt(k) are also

Gaussian and have variance σ2
N = dMσ2

n/2, where σ2
n is noise

variance in the time domain, M is the time frame length in sam-
ples, and d ≈ 0.4 is the mean of a squared Hamming window.
The magnitude spectrum values |Nt(k)| are Rayleigh distributed,
|Nt(k)| ∼ R(x; σ2

N ) = x

σ2

N

exp
“
− x2

2σ2

N

”
, and the phase spectrum

∠Nt(k) is uniformly distributed, ∠Nt(k) ∼ U[0,2π](·) [5, p.160].
For convenience, let us omit both time and frequency indices

for a while and consider an individual frequency component Yt′(k
′)

at an arbitrary frame t′ and frequency k′. As a shorthand, we de-
note Y = Yt′(k

′), aS = |St′(k
′)|, aN = |Nt′(k

′)| and the phase
difference between the clean sound and noise as θ = ∠St′(k

′) −
∠Nt′(k

′). Due to the noise characteristics, θ is uniformly distributed.
The power spectrum value |Y |2 can be written as

|Y |2 = |aS + aNeiθ|2 = a2
S + 2aSaN cos θ + a2

N. (5)

Expectation of |Y |2 can be calculated as

μY 2 =

Z
∞

0

Z 2π

−2π

|Y |2p(θ)p(aN)dθdaN = a2
S + 2σ2

N , (6)

where we have used the identity Ep(x)(x
2n) = 2nn!σ2n

N for even
moments of the Rayleigh density.

An estimate of S
(t)
dB (k) is then obtained by

Ŝ
(t)
dB (k) = 10 log10

`
g(|Yt(k)|2)

´
, (7)

where g(x) = max(x−2σ2
N , ε) removes the bias caused by additive

noise and constraints resulting negative or near-zero values to a small
constant ε = 10−2 · 2σ2

N which prevents logarithm of zero.
The level S

(t)
dB (fh) of a certain partial h is estimated using the

highest local maximum in Ŝ
(t)
dB (k) around the frequency of the par-

tial. For isolated tones, the search range is [(h − 1
2
)F, (h + 1

2
)F ]

whereas for polyphonic signals this has to be narrower.
Next, let us consider the variance σ2

ŜdB
of an estimated partial

level. This depends on the level itself, variance being lower for
high-level partials. The variances are important in order to weight
different observations according to their reliability. The variance of
|Y |2 is given by

σ2
Y 2 =

Z
aN

Z
θ

(|Y |2 − a2
S − 2σ2

N )2p(θ)p(aN)dθdaN (8)

= 4σ2
N (a2

S + σ2
N ).

The variance σ2
ŜdB

can then be calculated using a numerical tech-
nique called unscented transform [6]. The formulae can be found in
the reference, but the basic idea is to estimate how the variance of
|Y |2 changes in the non-linear log(·) function in (7). It was found
that the variance σ2

ŜdB
is inversely proportional to a linear function

of |Y |2.
4. PARAMETER LEARNING

Now the actual goal is to learn the instrument model parameters ξi,
βj , and λj , when given observed levels of harmonics Ŝ

(t)
dB (fh), h =

1, . . . , H , in analysis frames that cover various sounds produced by
the instrument in question.

The observed levels Ŝ
(t)
dB (fh) are used to build a system of equa-

tions from which the model parameters are estimated. Since the ab-
solute gain γdB of the analysed sounds is not of interest, we consider
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the partial levels only in relation to each other. Using (3), the in-
formation provided by each pair of observed harmonics h and j in
frame t can be written as

Ŝ
(t)
dB (fh) − Ŝ

(t)
dB (fj) (9)

=γdB + XdB(h) + BdB(fh) + tLdB(fh) + E
(t)
dB (fh)

− γdB − XdB(j) − BdB(fj) − tLdB(fj) − E
(t)
dB (fj).

Substituting the basis-function representations (4), this becomes
CxX
i=1

ξi [xi(h) − xi(j)] +

CbX
j=1

βj [bj(fh) − bj(fj)] (10)

+ t

C�X
k=1

λk [�k(fh) − �k(fj)] = Ŝ
(t)
dB (fh) − Ŝ

(t)
dB (fj) + E∗

dB.

where E∗

dB = E
(t)
dB (fj) − E

(t)
dB (fh) is treated as a random variable.

The above can be written in a matrix form as

Qu = a + e, (11)

where the vector u =
ˆ
ξ1, . . . , ξCx , β1, . . . , βCb

, λ1, . . . , λC�

˜T con-
tains the parameters to be learned, and each pair of harmonics gen-
erates one row to the matrix Q, the row being [x1(h) − x1(j),
x2(h)−x2(j), . . . , b1(fh)−b1(fj), b2(fh)−b2(fj), . . . , t[�1(fh)−
�1(fj)], t[�2(fh)− �2(fj)], . . .]. The vector a contains the observed
decibel level differences ŜdB(fh) − ŜdB(fj) corresponding to each
row of Q, and e contains the terms E∗

dB. Provided that H partials are
observed in frame t, exactly H − 1 linearly independent equations
(rows of Q) can be generated. We do this by pairing the strongest
partial with all the remaining H − 1 partials. Note that H varies
from sound to sound depending on their F0s, since we can use only
partials that fall within the frequency range of the body response.

Similarly to the above equations, each pair of harmonics in two
consecutive frames t and t− 1 of a same sound provide information
about the unknown parameters. If H partials are observed in the two
frames, H linearly independent equations can be generated. Without
loss of generality, we can pair partials with the same harmonic index
h in the two frames. The resulting equation is

Ŝ
(t)
dB (fh) − Ŝ

(t−1)
dB (fh) + E�

dB (12)

= BdB(f
(t)
h ) + tLdB(f

(t)
h ) − BdB(f

(t−1)
h ) − (t − 1)LdB(f

(t−1)
h ),

where E�
dB = E

(t)
dB (fh)−E

(t−1)
dB (fh) is treated as a random variable

and the terms γdB and XdB(h) do not appear because they cancel out.
The time-dependence of fh is underlined by writing f

(t)
h , since the

F0 may vary from frame to frame even within a single sound.
By substituting the basis function representations (4) to (12)

and writing the result in a matrix form, the following row is gener-
ated to Q: [0, . . . , 0, b1(f

(t)
h ) − b1(f

(t−1)
h ), b2(f

(t)
h ) − b2(f

(t−1)
h ),

. . . ,t�1(f
(t)
h ) − (t − 1)�1(f

(t−1)
h ), t�2(f

(t)
h ) − (t − 1)�2(f

(t−1)
h ),

. . .]. The corresponding level differences Ŝ
(t)
dB (fh)− Ŝ

(t−1)
dB (fh) are

stored in a, and E�
dB goes into e.

The error terms E∗

dB and E�
dB represent all the intrinsic variation

in the played sounds that cannot be captured by the source- lter-
decay model. These include factors such as excitation dynamics,
plucking point variation, etc. Together with the additive noise, they
affect the variance of the level differences ŜdB(·) − ŜdB(·) stored in
a. We use a common std value σE = 1 [dB] for both E∗

dB and E�
dB.

This is slightly optimistic: values around 1–6 dB are reasonable.
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Fig. 2. Functions XdB(h), BdB(h), and LdB(h) learned for three in-
struments: piano (top), clarinet (middle), and vibraphone (bottom).

As the absolute level of the sounds is not xed, it is necessary to
normalise ξi and βj to make them well-de ned. This can be done for
example by requiring that the level of XdB(h) for the rst harmonic
is 0 dB by writing

PCx

i=1 ξixi(1) = 0, and that the level of the body
response at 1000 Hz is 0 dB by writing

PCb

j=1 βjbj(1000) = 0. The
corresponding rows are then added to Q and a.

There are generally more observations than unknowns, and there-
fore (11) is overdetermined. A solution which minimizes the least-
square (LS) error criterion ||Qu − a||2 = ||e||2 is readily obtained
by the LS estimator û = (QTQ)−1QTa. An extension of this is the
weighted LS estimator

û = (QT
WQ)−1

Q
T
Wa, (13)

where a natural choice for W is a diagonal matrix with weights
[W]i,i inversely proportional to the variance of each observed level
difference in the vector a. More exactly,

[W]i,i = 1/(σ2
ŜdB

(i, 1) + σ2
ŜdB

(i, 2) + σ2
E), (14)

where σ2
ŜdB

(i, 1) and σ2
ŜdB

(i, 2) are the additive noise variances of
the two partials whose level difference was stored in element i of a,
and σ2

E is as described above. In practice, the variances σ2
ŜdB

are
negligible for all except the weakest partials.

Figure 2 shows examples of learned XdB(h), BdB(h), and LdB(h)
for three different instrument. One-second long sounds covering the
entire pitch range of each instrument were used to estimate the pa-
rameters. For piano (top panels), we can see that every 8th harmonic
is missing from XdB(h) because the strings are excited at 1/8 point
along their length. For piano, BdB(h) does not model only the res-
onances of the soundboard, but also the varying number of signif-
icant partials in the lowest (27Hz) and the highest (4.2kHz) tones.
Combining XdB(h) with BdB(h) is successful in representing both
extremes. Loss lter shows slight attenuation for all except the high-
est partials, where some energy appears to be transferred from the
lower partials. Characteristics of the clarinet and the vibraphone can
be observed in the middle and the lower panels.

5. AUDITORY STREAM FORMATION

Here we attempt to analyze a polyphonic music signal so as to es-
timate the F0s and chain together sounds that belong to a same in-
strument. The LS estimation framework is particularly suitable for
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this task, because it allows sequential computation. In the sequential
LS, the parameter vector û is initialised to all-zero and then updated
sequentially, using one row at a time from Q and a. Also the corre-
sponding LS error, J = ||Qu−a||2, can be calculated sequentially.
The update equations can be found in [7, p.249].

We perform auditory streaming in a Viterbi-like manner as fol-
lows: First, a polyphonic input signal is processed with an instru-
ment-independent multiple-F0 estimator which nds R F0s at each
temporal segment q of the input. In segment 0, R different sequential-
LS streams are initialised, each corresponding to a unique instrument
model. In segment q, each of the r = 1, . . . , R tones detected in the
segment are taken into consideration one at a time. The sound r is
appended on trial to all the R streams ending at the preceding seg-
ment q − 1, and the one leading to the smallest LS error J is chosen
to be the stream for that sound. After all sounds in all frames are
processed, the best stream is found by backtracking from the sound
with the smallest LS error in the last segment Q.

The described method requires that F0s of the sounds and their
partial levels can be estimated from the mixture signal. We used
the multiple-F0 estimator [8] for this purpose, and estimated partials
levels directly by picking spectral maxima nearby their frequencies.

6. RESULTS

The proposed method was evaluated by training models for 33 differ-
ent musical instruments. The data consisted of the McGill University
Master Samples collection, independent recordings for the acoustic
guitar, and Roland XP30 samples for the hammond organ and the
electric guitar. Sounds over the entire pitch range of each instrument
were used and partial levels were estimated in 93 ms frames over the
leading one second of each sound.

The model accuracy was evaluated by measuring average per-
ceptual distortion between the model output and the original sam-
ples. Perceptual distortion was computed by comparing the dB levels
at each critical band for the model and for the input data. The dB-
level differences were squared, averaged over the active bands of a
sound, and the resulting values were averaged over different sounds
of the same instrument. These values were averaged over instru-
ments, and at the end, a square root was taken. The absolute levels
of the model and the data were matched in each individual analysis
frame; that is, only the shape of the spectrum was of interest.

Figure 3 shows the results for four different model con gura-
tions. The model XBL refers to the source- lter-decay model where
XdB(·), BdB(·), and LdB(·) were all used, the model BL refers to a
con guration where only BdB(·) and LdB(·) were included in the lin-
ear model (3), and so forth. The model B represents the traditional
MFCC model, since the (linear) cosine transform would not make
any difference to the model accuracy. As can be seen, the model
X alone is not suf cient for any instrument family. The model B
(cf. MFCCs) and BL perform surprisingly well for many instrument
families, but only the model XBL performs well for all. Sounds that
bene t signi cantly from the term XdB(·) include the mallet percus-
sions, clarinets, hammond organ, and the electric guitar.

Auditory streaming was evaluated as follows. Melodic lines
were extracted from MIDI les and synthesised with samples from
above-described instrument database, however simplifying the time
structure so that all notes were 280 ms in length. Two melodies were
then randomly mixed, but ensuring that no identical F0s were played
simultaneously in the two melodies, and that the two instruments be-
longed to different instrument families (listed in Fig. 3). The method
described in Sect. 5 was used to estimate the F0s and to chain to-
gether notes coming from a same instruments. 48 mixture signals

0 3 6 9 12 15
Brass

Saxophones
Oboe, bassoon, E.horn

Clarinets
Flutes

Bowed strings
Plucked strings

Piano
Guitars

Hammond organ
Mallet percussions

Average of all

Perceptual distortion (dB)

X
B
BL
XBL

Fig. 3. Perceptual distortion caused by different models, averaged
over all instruments (top) and within instrument families.

were generated, each consisting of 28 notes on the average. The pro-
posed method was able to nd the F0s and stream correctly 88% of
the notes. In higher polyphonies, the sound separation part should
be done more carefully than just picking partials from the spectrum.

7. CONCLUSIONS

A new technique for modeling musical instrument sounds was pro-
posed. The simulation results show clear improvement over MFCC-
like models for certain instrument families. Better modeling accu-
racy is expected to lead to better classi cation and coding results in
the future work. The proposed method for auditory streaming was
shown to perform well for low-polyphony material where the em-
ployed sound separation technique was suf cient.
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