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ABSTRACT

In this paper, rst, we propose a computational-cost ef cient blind
source separation combining closed-form 2nd-order independent com-
ponent analysis (ICA) and nonclosed-form higher-order ICA. The
closed-form solution of the 2nd-order ICA has been recently pre-
sented by one of the authors. This nding motivates us to com-
bine the closed-form 2nd-order ICA and higher-order ICA, where
the preceding closed-form ICA produces a good initial value and the
following higher-order ICA updates the separation lters from the
advantageous status. Secondly, we utilize the proposed architecture
to address an essential question that which type of statistics is more
bene cial to ICA among non-stationarity and non-Gaussianity. This
can be conducted owing to the attractive property that the closed-
form ICA can provide a good estimate of the theoretical upper limi-
tation of the separation performance among 2nd-order ICAs without
suffering from poor-convergence problems. Experimental results re-
veal that the non-Gaussianity-based ICA can outperform the non-
stationarity-based ICA.

Index Terms— Separation, speech enhancement, acoustic ar-
rays, acoustic signal processing, adaptive signal processing

1. INTRODUCTION

Blind source separation (BSS) is the approach taken to estimate orig-
inal source signals using only the information of the mixed signals
observed in each input channel. Basically BSS is classi ed into un-
supervised ltering technique, and in that the source-separation pro-
cedure requires no training sequences and no a priori information on
the directions-of-arrival of the sound sources. Owing to the attrac-
tive features of BSS, much attention has been paid to BSS in many
elds of signal processing such as speech enhancement.
In recent researches of BSS based on independent component

analysis (ICA), various methods have been proposed to tackle acoustic-
sound separation [1]–[6] which is referred to as convolutive mixing
problem. This paper also addresses the BSS problem under rever-
berant conditions which often arise in many practical audio applica-
tions. Generally speaking, almost all the algorithms in ICA, e.g.,
2nd-order ICA [2, 3, 5, 6] and higher-order ICA [1, 4] are con-
ducted through nonclosed-form, in other words, iterative, optimiza-
tion, where the separation lters are improved along with the gra-
dient of an appropriate cost function. However, this property often
leads to the dif cult problem of the poor and slow convergence [7].
In addition, the latency in the convergence prevents ICA-based BSS
from being applicable to real-time processing.

In this paper, rst, we newly propose an ef cient BSS method
combining closed-form 2nd-order ICA and nonclosed-form higher-
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order ICA. The closed-form solution of the 2nd-order ICA has been
recently presented by one of the authors [8]. This mathematical con-
tribution yields an idea of combining the closed-form 2nd-order ICA
and the higher-order ICA, where the preceding closed-form ICA can
produce a good initial value and the following higher-order ICA can
update the separation lters from the advantageous status.

Secondly, based on the above-mentioned structure, we address
an essential question that which cost function is better among non-
stationarity (on 2nd-order ICA) and non-Gaussianity (on higher-order
ICA). This can be conducted using the proposed method’s attractive
property that the closed-form ICA approximately shows the theoret-
ical upper limitation of the separation performance among 2nd-order
ICAs without suffering from poor-convergence problems. The eval-
uation of the separation performance in the proposed combination
easily indicates the winner of non-stationarity vs. non-Gaussianity
in ICA.

2. MIXING PROCESS AND CONVENTIONAL ICA

In this study, the number of microphones is K and the number of
multiple sound sources is L, where we deal with the case ofK = L.

Multiple mixed signals are observed at the microphone array,
and these signals are converted into discrete-time series via an A/D
converter. By applying the short-time discrete-time Fourier trans-
form framewisely, we can express the observed signals, in which
multiple source signals are linearly mixed, as follows in the time-
frequency domain:

x(f, t) = A(f)s(f, t), (1)

wherex(f, t) = [x1(f, t), · · · , xK(f, t)]T is the observed signal vec-
tor, and s(f, t) = [s1(f, t), · · · , sL(f, t)]T is the source signal vec-
tor. Also, A(f) is the mixing matrix which is complex-valued be-
cause we introduce a model to deal with the relative time delays
among the microphones and room reverberations.

Next, we perform signal separation using the complex-valued
unmixing matrix W (f), so that the L time-series output y(f, t) =
[y1(f, t), · · · , yL(f, t)]T becomes mutually independent; this pro-
cedure can be given as

y(f, t) = W (f)x(f, t). (2)

We perform this procedure with respect to all frequency bins.
The optimal W (f) is obtained by many types of ICAs, where

several cost functions are used to measure the independence among
sources. The most popular statistics used in the cost functions are
non-stationarity and non-Gaussianity. For example, the conven-
tional 2nd-order ICA utilizes non-stationarity of sources. The opti-
mization can be achieved by minimizing, e.g., the following function

I  451424407281/07/$20.00 ©2007 IEEE ICASSP 2007



[3]:

JSO(W (f)) =
X

i

||W (f)Rti(f)W (f)H

− diag[W (f)Rti(f)W (f)H]||2, (3)

where superscript H represents a conjugate transposition, Rti(f)
(i = 1, 2, ...) are the cross-correlation matrices of the input x(f, t),
which are calculated around the multiple time indices ti, and diag[·]
is the operation for setting every off-diagonal element to zero. The
minimization of JSO(W (f)) yields simultaneous diagonalization
(decorrelation) of the correlation matrix of y(f, t).

In the typical higher-order ICA, Kullback-Leibler divergence
between the joint probability density function (PDF) of y(f, t) and
the product of marginal PDFs of yl(f, t) is used for the cost function
to be minimized as

JHO(W (f))=

Z
p(y(f, t))log p(y(f, t))QL

l=1

QT−1
t=0 p(yl(f, t))

dy(f, t), (4)

where p(yl(f, t)) is the marginal PDF of yl(f, t), p(y(f, t)) is the
joint PDF of y(f, t). This cost function is highly relevant to higher-
order statistics of the sources and non-Gaussianity.

In general, for both 2nd- and higher-order ICAs, the optimiza-
tion procedures can be conducted via nonclosed-form (i.e., iterative)
optimization in whichW (f) is updated along with the negative di-
rection of gradient of JSO(W (f)) or JHO(W (f)). Therefore it has
an inherent disadvantage in that there is dif culty with the poor and
slow convergence of nonlinear optimization, particularly when we
are confronted with very complex convolutive mixtures and unfortu-
nately set a bad initial value. Furthermore, ordinary ICA-based BSS
algorithms require huge computational complexities. The disadvan-
tages reduce the applicability of the approach to the general audio
applications which often need real-time processing.

3. PROPOSED METHOD
3.1. Motivation

In a previous study, closed-form solution of the 2nd-order ICA was
proposed by one of the authors [8], who showed that simple alge-
braic calculations enable the separation of mixed signals without it-
erative lter updating. This nding has motivated us to combine the
closed-form 2nd-order ICA and higher-order ICA, where the com-
putational cost is considerably reduced (see Sect. 3.4). Moreover,
our strategy provides a good tool for an insight into the essential
question that which cost function is better among non-stationarity
and non-Gaussianity (see Sect. 3.5). Hereinafter we describe the de-
tailed algorithm.

3.2. First stage: closed-form 2nd-order ICA

In the original reference [8], the principle of the closed-form 2nd-
order ICA was derived, especially from the mathematical point of
view. This subsection brie y describes the overview of signal pro-
cessing in the closed-form ICA. The strict proofs of the theorem will
be omitted due to the limitation of the current manuscript’s space.

First, we obtain the correlation matrices with different time points
as

Rti(f) = 〈x(f, t)x(f, t)H〉t∈ti , (5)

where 〈·〉t∈ti denotes the time-averaging operator over speci c time
duration ti, and i = 1, 2, ... represent indices of time-averaging
block.

Next, we apply the singular value decomposition (SVD) to a
superposition ofRti(f), which is represented as

X
i

Rti(f) = U (f)diag(λ1, λ2, ...)U (f)H, (6)

where λk are the eigenvalues, diag(λ1, ...) denotes the diagonal ma-
trix which includes the eigenvalues, and U (f) is the matrix consist-
ing of the eigenvectors. Then we obtain a full-rank decomposition
for pseudo-inverse of

P
i Rti(f) as follows

h X
i

Rti(f)
i+

= L(f)L(f)H, (7)

L(f) = U (f)diag(1/
√
λ1, 1/

√
λ2, ...). (8)

It can be proved [8] that if the covariance of the sources s(f, t)
in ti is negligible, every L(f)HRti(f)L(f) for any i shares the
same eigenvectors, and this is given via SVD form as

L(f)HRti(f)L(f) = T (f)diag(σ1(ti), σ2(ti), ...)T (f)H, (9)

where σk(ti) are the eigenvalues for a speci c time block ti, and
T (f) denotes the matrix consisting of shared eigenvectors which
are independent of time-block index i. Therefore, for any i, the si-
multaneous diagonalization ofRti(f) can be achieved as follows;

T (f)HL(f)HRti(f)L(f)T (f) = diag(σ1(ti), σ2(ti), ...), (10)

and this means that the optimal separation lter matrix in the 2nd-
order sense is given by

W SO(f) = (L(f)T (f))H. (11)

Note that, for the calculation of T (f) in Eq. (9), it is suf cient for
us to only apply a single SVD to an arbitrary single time-block ti
because of the eigenvector-sharing property.

It is worth mentioning that Molgedey et al. have shown the
closed-form solution only for the case that the number of correla-
tion matrix blocks is up to 2 [9]. In contrast, the algorithm [8] used
in the proposed method is the rst generalized closed-form solution
which can be applicable even to the case of i > 2.

3.3. Second stage: nonclosed-form higher-order ICA

The separation lter matrix W SO(f) obtained by 2nd-order ICA
often provides insuf cient source-separation performance. To pol-
ish up the separation lter matrix and gain the further performance,
we propose to combine the nonclosed-form higher-order ICA after
the 2nd-order ICA. This strategy regards the separation lter matrix
W SO(f) as an initial value for higher-order ICA’s iterative learning.
The higher-order ICA is conducted by the following manner;

W [0](f) = W SO(f), (12)

W [j+1](f) = η
h
I −

D
Φ(y(f, t))yH(f, t)

E
t

i
W [j](f)

+W [j](f), (13)

where superscript [j] represents the number of iterations, I is the
identity matrix, 〈·〉t denotes the time-averaging operator over whole
time indices, and Φ(·) is the appropriate nonlinear vector function,
e.g., [?, 10] (we use [10] in this paper).

In general, the higher-order ICA suffers from an problem of the
poor and slow convergence of nonlinear optimization. In the pro-
posed method, however, the preceding closed-form 2nd-order ICA
can give a better initial state for the higher-order ICA, and the pro-
posed combination mitigates the drawbacks on the poor convergence.
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3.4. Computational-cost ef ciency of proposed method

In the rst stage, the closed-form 2nd-order ICA mainly requires the
following computations.
Calculation of correlation matrices: The computations for obtain-

ingRti(f) result in, e.g., more than hundred multiplications-
accumulations to deal with the observed signal of several sec-
onds.

Calculation of L(f): To obtainL(f) in Eq. (8), a single SVD should
be performed as in Eq. (6), where the computational load is
O(K3) (K corresponds to the dimension of L(f)).

Calculation of T (f): The matrix T (f) in Eq. (11) needs one more
SVD in Eq. (9) with the computational load of O(K3).

In summary, overall amount of computations in the closed-form
2nd-order ICA approximately depends on the cost of obtainingRti(f)
because the calculations of L(f) and T (f) are relatively negligible
when K is small, e.g., 2 or 3. In addition, it should be mentioned
that the whole computations in the closed-form solution are almost
the same as those for 1 or 2 iterations in the higher-order ICA, and
thus almost all the computational resources can be dedicated to the
higher-order ICA part in the second stage. Furthermore, the compu-
tational complexities can be totally reduced because the good initial-
ization by the closed-form ICA saves the number of iterations in the
following higher-order ICA’s updating.

3.5. As a judging tool for non-stationarity vs. non-Gaussianity

Another contribution of the closed-form 2nd-order ICA is concerned
with a comparison on non-stationarity and non-Gaussianity. Owing
to Eq. (10), W SO(f) given by Eq. (11) can diagonalize each cor-
relation matrix when the covariance of s(f, t) in ti is negligible.
Consequently under such a condition, the cost function de ned by
Eq. (3) is minimized to be zero, i.e, the following relation holds;

Jso(W SO(f)) = 0. (14)

This remains us that the closed-form solution Eq. (11) gives
a good estimate of the theoretical upper limitation of the separa-
tion performance among the 2nd-order ICAs based on source non-
stationarity. Note that there are no affections from poor-convergence
and local-minimum problems which often arise in the conventional
nonclosed-form (iterative) method. Therefore, by seeing the results
of the rst stage and the possible performance increase/decrease by
the second stage, we can put a period to the discussion on non-
stationarity vs. non-Gaussianity in ICA, i.e., the increase implies
the superiority of non-Gaussianity.

4. EXPERIMENTS AND DISCUSSIONS

4.1. Experimental conditions

To evaluate the ef cacy of the proposed method, we carried out
sound-separation experiments in a real reverberant room illustrated
in Fig. 1, where two sources and two directional microphones (stereo-
microphone) are set. The reverberation time in this room is 200 ms.
Two speech signals are assumed to arrive from different directions,
θ1 and θ2, where we prepare three kinds of source direction patterns
as follows; (θ1, θ2) = (−90◦,−10◦), (−10◦, 0◦), or (30◦, 60◦).
We used the speech signals spoken by two male and two female
speakers as the source samples, and we generated 6 combinations
of speakers. The sampling frequency is 8 kHz and the length of each
sound sample is limited to 3 s. The DFT size is 1024, and the frame
shift length is 256. The block size for calculation of each Rti(f) is
set to 1.5 s in the closed-form 2nd-order ICA part.
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Fig. 1. Layout of reverberant room used in experiments.

4.2. Evaluation of computational-cost ef ciency
In order to compare the proposed method with several conventional
ICAs, we prepare two higher-order ICAs with different initial lter
matrix W [0](f) as (A) a matrix which has entries of random com-
plex value, and (B) identity matrix. The step-size parameter η in the
higher-order ICA is xed to 0.1 throughout the experiments.

Noise reduction rate (NRR) [4], de ned as the output signal-
to-noise ratio (SNR) in dB minus the input SNR in dB, is used as
the objective indication of separation performance. The SNRs are
calculated under the assumption that the speech signal of the unde-
sired speaker is regarded as noise. Figures 2–4 show the convergence
curves of NRR under different speaker allocations. As for the pro-
posed method, we plot the results only in the higher-order ICA part.
These scores are the averages of 6 speaker combinations.

From the results, we rst con rm that the closed-form 2nd-order
ICA can score the NRRs of 8–10 dB (see the point of Number of iter-
ations = 0) regardless of the speaker directions. This consistent and
tolerable performance is very attractive if we take into account the
low computational cost. Application of the higher-order ICA in the
second stage can remarkably improve the separation performance,
and the proposed BSS outperforms all of the conventional methods,
especially on its convergence time.

4.3. Judge of non-stationarity vs. non-Gaussianity in speech
In this subsection, we compare the 2nd-order ICA (non-stationarity)
and higher-order ICA (non-Gaussianity). Here we prepare 3 s (max
i = 2) or 36 s (max i = 64) long observed signals to consider the de-
pendence on the data length. The higher-order ICA after the closed-
form 2nd-order ICA is conducted as two manners; learning with
full-length data, or with 1.5 s data, to equalize the data-size effect
of time-block averaging.

As shown in Figures 5–7, the performance of the 2nd-order ICA
is slightly improved as the observed data length increases, but it
cannot reach the level of the higher-order ICA at all. Although the
experimental results are very limited number of evidences, we can
speculate that non-Gaussianity is more bene cial than non-stationarity
in ICA for speech signals inherently. This result is also consistent
with previous all-iteration-type ICAs’ results (see, e.g., [6]; unfor-
tunately these methods still suffer from local-minima problem). As
far as we know, our new comparison and conclusion are the world’s
rst appearances because we derive it via closed-form method, and
this can help the further investigations on this topic.

5. CONCLUSION
First, we proposed a new ef cient BSS method combining closed-
form 2nd-order ICA and nonclosed-form higher-order ICA, where
the preceding closed-form ICA can provide a good initial value and
the following higher-order ICA can update the separation lters from
the advantageous status. This enables us to reduce the computational
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Fig. 2. NRR convergence for (θ1, θ2) = (−90◦,−10◦).

Fig. 3. NRR convergence for (θ1, θ2) = (−10◦, 0◦).

Fig. 4. NRR convergence for (θ1, θ2) = (30◦, 60◦).

complexities without deteriorating the separation performance. Sec-
ondly, using the proposed method, we compare two types of ICAs
with non-stationarity and non-Gaussianity. Experimental results re-
veal that the performances of the 2nd-order ICA are inferior to those
of the higher-order ICA.
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Fig. 5. Results of NRR for (θ1, θ2) = (−90◦,−10◦).

Fig. 6. Results of NRR for (θ1, θ2) = (−10◦, 0◦).

Fig. 7. Results of NRR for (θ1, θ2) = (30◦, 60◦).
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