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ABSTRACT

We present a method for simultaneous speech source separation in
reverberant environments using both localization cues and a speech
model. Previous source separation work has focused primarily on
one or the other of these approaches; we use a novel localization cue
observation noise model to allow for a natural combination of the
approaches. We model speech as a Gaussian mixture model (GMM)
of short-time spectral magnitudes and model localization cue noise
using a time-varying noise model learned from labeled training data.
We show that our technique outperforms competing techniques as
measured by segmental signal-to-noise ratio (SNR) and segmental
log-spectral distortion (LSD) and also show that our technique is
robust to typical levels of audio localization error.

Index Terms— Speech enhancement, Array signal processing,
Acoustic arrays, Speech processing

1. THE SOURCE SEPARATION PROBLEM

We address the problem of simultaneous speech source separation
in reverberant environments. In this work, we assume that all of
the mixed signals are speech-like, and we assume that localization
cues derived from the mixed signal are available. This is consistent
with the real-life “cocktail party” scenario in which a (presumably
binaural) listener is able to attend to a single chosen voice among the
many simultaneously active voices at a cocktail party.

Cherry [1] lists several factors that could contribute to success-
ful cocktail party performance, including differing localization cues
among the speakers, knowledge of the spectrotemporal dynamics of
speech, differences among speakers’ voices, and speech-related vi-
sual cues. A successful source separation solution will likely need
to exploit several of these factors, although to this point most have
focused on only one. This paper combines two of them, localization
cues and spectrotemporal dynamics, and empirically demonstrates
the utility of this combined approach.

1.1. Previous work

This work combines two previous approaches to speech source sepa-
ration. The rst approach is to learn generative models of individual
speech sources and to use these in combination to “decode” a mix-
ture of speech signals. One example of this approach is Roweis [2],
which trains speaker-speci c hidden Markov models (HMMs) on a
spectrogram representation of speech and develops an ef cient algo-
rithm for decoding the factorial HMM resulting from the simultane-
ous activity of two individual speakers. From the states of the facto-
rial HMM, [2] infers a binary mask on the spectrogram to separate
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the two speakers. Another example of this approach is Hershey and
Casey [3], which trains speaker-speci c narrow-band and wide-band
HMM speech models and then uses simulated annealing to nd the
marginal probabilities of simultaneous states for a pair of speakers’
HMMs given the observed mixed waveform. Based on these state
probabilities, [3] creates a time-varying Wiener lter (implemented
as a continuous-valued mask on the spectrogram representation) to
separate the two simultaneous speakers. This paper builds most di-
rectly on the work in [4], which is itself a follow-up to the work in
[2] and which found that modeling speech spectra with a Gaussian
mixture model (an HMM model without a transition matrix) works
just as well for the source separation problem. By using a model of
the dynamics of speech, these techniques are able to achieve some
speech separation given only a single audio channel as input.

The second approach that we combine is that of using localiza-
tion cues to generate a binary spectrogram mask for source sepa-
ration as in Yilmaz and Rickard [5]. [5] assumes that source lo-
cations are unknown and clusters localization cues across time and
frequency to determine likely source locations according to an ane-
choic propagation model. Once these source location estimates are
obtained, a spectrogram mask is generated by assigning each time-
frequency bin to the source with which the observed intermicro-
phone phase and level differences at that time-frequency are most
consistent. This approach does not require a spectrotemporal model
of speech, but it does require a source of localization cues, most typ-
ically derived from a microphone array.

Our technique, described below, combines the above two ap-
proaches. It is conceptually similar to Nix et al. [6], although be-
cause of our implementation choices (and to a small extent because
of the faster processors available today), our technique runs over ten-
thousand times faster than that of [6]. Because of this, we are able to
test our technique more extensively, and we report results for more
strongly reverberant environments. In addition, we use a novel time-
varying localization cue observation noise model, described in detail
in [7], to facilitate our combined approach.

2. OUR APPROACH: COMBINING LOCALIZATION CUES
WITH SPEECHMODELS

We combine localization cues with a spectrotemporal model of speech
in a probabilistic framework and use this model to nd a binary spec-
trogram mask for separating mixed speech signals. We focus on the
case of a two-microphone array with two simultaneous speakers, and
we begin by de ning a Gaussian mixture state-space model for the
problem (similar to that de ned in [4]):
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p(zi(u) = k) = πk k ∈ {1, . . . ,K} (1)
a(u, f) = arg max

i
(μzi(u)(f)) (2)

p(y(u, f)|zi(u)) ∼ N (μza(u,f)(f), σ2
specza(u,f)

(f)) (3)

p(θ(u, f)|zi(u)) ∼ N (θdirecta(u,f) , σ
2
loc(u, f)) (4)

In the above model, zi(u) is the hidden state index (in our GMM
with K states) for speaker i ∈ {1, 2} in the spectrogram frame in-
dexed by u. Because we are assuming a GMM with no dynamics,
the distribution over states is independent of time and is given by
the probability mass function πk. Each state z is associated with a
log-spectral output distribution speci ed by mean μz(f) and diago-
nal covariance σ2

specz
(f), where f is an index over frequency bins.

To determine the observed log-spectrogram of the mixed signal, we
make the assumption (as in [4]) that log(a+b) ≈ max(log a, log b),
so the log-spectrogram of the mixed signal, y(u, f), will be approx-
imately the bin-wise maximum of the two individual speakers’ spec-
trograms. Note that, incontrast to [4, 2, 3], we use the same speaker-
independent spectral model for each of the two speakers. (We train
this model on speech from several different speakers, none of which
are in our test set.) The advantage of the speaker-independent model
is that we do not need to know in advance whose voices we are sep-
arating. The disadvantage is that much of the separating ability of,
for example [4], is due to the differences in the marginal spectral dis-
tributions of the speaker-dependent models. As such, our speaker-
independent model is not suf cient to separate voices in a monaural
mixed signal, and this is why we also incorporate localization cues
from the array data.

We assume the locations of the two speakers relative to the mi-
crophone array are known, either by simultaneously using the micro-
phone array to localize them or by tracking them in some other way,
for example by a vision-based tracker. Given the known speaker lo-
cations, we can compute the intermicrophone phase difference due
to the direct path propagation as a function of frequency, which we
denote as θdirect(f). We assume that the observed intermicrophone
phases, θ(u, f), will have the θdirect(f) of the bin-wise loudest
source as their means and will have variances σ2

loc(u, f) determined
by a linear function of the log-spectrogram values learned from a
labeled training corpus. The details of computing σ2

loc(u, f) are in
[7], where we showed that these variance estimates can be used to
improve localization performance and are related to the psychoa-
coustics of the precedence effect. The important thing for this work
is that these variance estimates provide a natural way to incorporate
localization cues into this state-space model.

Given the above generative model for log-spectrum and phase
difference observations of simultaneous speech, we must now com-
pute these observations from our input signals. We begin with a
time-domain signal xi(t) from each of our two microphones. We
then compute a complex spectrogram representation of each sig-
nal, si(u, f). From these spectrograms, we compute the intermi-
crophone phase difference

θ(u, f) = � s1(u, f)

s2(u, f)
(5)

and we take the log-magnitude of the rst channel as our log-
spectrogram observation y(u, f) = log s1(u, f).

We chose K = 40 states for our speech GMM, which means
that the factorial GMM resulting from the mixture of two speakers
has 402 = 1600 states, which is still a manageable number of states
to evaluate on current computer hardware. To infer the posterior

Segmental Segmental Listener
Technique SNR (dB) LSD (dB) Pref. (%)

Wiener lter (oracle) 11.1 6.2 97
Ideal mask (oracle) 9.7 4.0 83
GMM + loc. 5.2 6.4 34
DUET -0.6 6.6 19

Delay-and-sum 1.8 8.2 44
Convolutive BSS 3.8 9.2 39
Original mixture 0.3 8.4 33

Table 1. Average separation performance in synthetic rooms. “Lis-
tener pref.” is the percentage of the time that each technique was
preferred in paired comparisons with other techniques.

probability of the factorial states, we simply compute the likelihood
of each state and normalize:

Lmtot(u)=Lαmshape
(u)Lβmloc

(u) (6)

Lmspec(u)=
Y
f

N (y(u, f);μm(f), σ2
specm

(f)) (7)

Lmloc(u)=
Y
f

p(θ(u, f); θdirecta(u,f)(u, f), σ2
loc(u, f)) (8)

pmtot(u)=
Lmtot(u)PK2

m=1 Lmtot(u)
(9)

Here,m is an index over the factorial state, Lmtot is the overall
likelihood, which is a product of Lmspec , the spectral shape likeli-
hood, and Lmloc , the localization cue likelihood, each of which is
computed according to the state-space model de ned above. (We
have abused notation slightly by using μm and σ2

specm
to now repre-

sent the mean and covariance of a combined factorial state, whereas
in Equation 3, they represented the mean and covariance of an in-
dividual speaker state.) Likelihood weighting terms α and β (with
values chosen to maximize performance on a validation data set) are
used to adjust the dynamic ranges of the two terms to improve per-
formance.

Each factorial state implies a single-frame binary spectrogram
mask (denoted asmaskm(f)) based on which of the two individual
speaker states has the higher expected log-magnitude. Given the
posterior state probabilities, we can compute the expected value of
the binary mask (yielding a continuous-valued mask on [0, 1]) which
we then threshold to generate a nal time-frequency binary mask

M(u, f) =

(
1 for (u, f) s.t.

P
m(pmtot(u) ∗maskm(f)) > 1

2

0 otherwise
(10)

which can then be applied to the spectrogram as in [4, 5] to sep-
arate the speakers. Chapter 5 of [8] contains a more detailed descrip-
tion of our technique and its relationship to other approaches.

3. RESULTS

We have tested our technique on data from real and synthetic rever-
berant environments. Table 1 summarizes our results on synthetic
data, and Table 2 summarizes our results on real data. (Real data was
collected from individual speakers in real rooms and additively com-
bined to generate simultaneous speaker data for our tests.) We eval-
uate by calculating segmental signal-to-noise ratio (SNR) and seg-
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Technique Segmental Segmental
SNR (dB) LSD (dB)

Wiener lter (oracle) 7.6 4.0
Ideal mask (oracle) 5.3 4.8
GMM + loc. 2.7 7.0
DUET 0.6 7.9

Delay-and-sum 1.5 8.0
Convolutive BSS 1.1 8.6
Original mixture 0.6 8.4

Table 2. Average separation performance in real rooms.

mental log-spectral distortion (LSD) as described in [9]. We calcu-
late segmental SNR and segmental LSD on over an hour of recorded
speech with synthetically added reverberation (for the synthetic data
case) consisting of ten male and six female speakers and on roughly
thirty minutes of audio of live humans recorded in three different
real rooms for the real data case. The intermicrophone spacing was
37.5 cm for both the real and synthetic data. The synthetic data envi-
ronments ranged in reverberation time from 200 ms to 1600 ms, and
the real data environments ranged in reverberation time from 400
ms to 800 ms. The synthetic data tested speaker separations from
8◦ to 61◦, and the real data tested speaker separations from 16◦ to
61◦. Due to space constraints, we present only average performance
numbers here. Chapter 5 of [8] presents detailed results as a func-
tion of room reverberation time and speaker separation angle. For
the purposes of this evaluation, we used the measured positions of
the speakers with respect to the microphones for the real data and
the known simulated locations for the synthetic data to determine
θdirect for each scenario.

Results in the summary tables are average performance over all
of these conditions. In addition, for the synthetic data case, we con-
ducted a small scale (15 subject) listener study on a subset of the data
to determine whether our automated objective measures were consis-
tent with subjective human evaluation. In the listener study, subjects
were presented with separation results from pairs of different tech-
niques and asked to pick which one of the two techniques separated
the speakers better. For each technique, we report the fraction of the
trials in which that technique appeared in which it was favored.

We evaluate our technique, “GMM + loc.” (described in Sec-
tion 2), in comparison to several others. “Wiener lter” is an oracle-
based technique in which a time-varyingWiener lter was calculated
from knowledge of the isolated speech spectra. “Ideal mask” is the
ideal binary mask, again calculated from knowledge of the isolated
speech spectra. “DUET” corresponds to using our technique without
any speech GMM, in which we make independent mask decisions in
each time-frequency bin based only on localization cues. This is
nearly identical to the DUET technique described in [5], although
we use our Gaussian noise model as opposed to the histogram-based
noise model in [5], and we assume that the source locations are
known, while [5] determined the source locations in an initial unsu-
pervised clustering phase. Assuming known source locations should
only help the DUET technique, and in preliminary tests, we did not
nd signi cant differences in performance between our noise model
and that of [5]. ([5] notes that their technique does not perform
well in reverberant environments and that it could bene t from a
speech model. We feel that our formulation is a natural extension
of theirs.) We also compare to two beamformer-based source sepa-
ration techniques. “Convolutive BSS” is the blind source separation
(BSS) technique described in [10] which nds an unmixing lter to
decorrelate its outputs at multiple points in time. “Delay-and-sum”

is a delay-and-sum beamformer steered to the known source loca-
tions. Finally, “Original mixture” is the signal from one microphone
with no processing.

Both of these oracle-based techniques out-perform all of the
non-oracle techniques, and the continuous-valued Wiener lter out-
performs the binary mask. The ideal binary mask can be thought of
as a thresholded Wiener lter, so this is not surprising. Our tech-
nique has the best performance on the automated objective metrics
for both real and synthetic data of all of the non oracle techniques
(highest segmental SNR and lowest segmental LSD). Of the other
techniques, “DUET” achieved the next best segmental LSD for both
real and synthetic data, and “Convolutive BSS” had the next best
segmental SNR on synthetic data while “Delay-and-sum” had the
next best segmental SNR on real data. The fact that our “GMM +
loc.” outperforms “DUET” shows the utility of including a spectral
model. The fact that our technique outperforms delay-and-sum and
convolutive BSS shows that binary spectrogram mask techniques are
a promising alternative to beamformer-based techniques for incor-
porating both spectral models and localization information. The fact
that the overall ordering of the results is similar for real and syn-
thetic data shows that none of the techniques are unfairly exploiting
any potential peculiarities of the synthetic data.

The human listener tests provide a somewhat different perspec-
tive on the performance of the separation algorithms. Again, the two
oracle-based techniques outperform the non-oracle techniques, and
the Wiener lter outperforms the ideal binary mask. However, hu-
man listeners prefered the two beamformer-based techniques over
the binary mask-based techniques, and in fact the simple delay-and-
sum algorithm was the best-performing non-oracle method. In in-
formal post-listener-test interviews, several subjects mentioned that
they were annoyed by the “artifacts” generated by some of the tech-
niques, and that they preferred techniques that generated fewer ar-
tifacts. (Subjects were simply instructed to choose the technique in
each trial that “separated best.” Nothing was explicitly mentioned
about the perceptibility of artifacts.) The binary mask-based tech-
niques tend to generate more noticeable artifacts because the binary
masks themselves change every frame, and any errors in these rapid
changes are easily perceived. The beamformer-based techniques
simply compute a single separating lter for the entire utterance, and
even if this single lter does not separate as well (as measured, for
example, by segmental SNR), the lack of abrupt changes leads to
fewer artifacts. Still, our listener test shows that “GMM + loc.” out-
performs “DUET,” again showing the utility of including a spectral
model.

Finally, we note that our algorithm description in Section 2 was
slightly simpli ed for expository purposes. The results here were
obtained using a slight modi cation to Equation 8, in which the
p(θ(u, f); θdirecta(u,f)(u, f), σ2

loc(u, f)) termwas smoothed across
frames using a rst-order autoregressive lter on the log probability.
This was done to reduce unnecessarily rapid uctuations in the lo-
calization likelihood (which would lead to unnecessarily rapid uc-
tuations in the binary mask itself). More details can be found in [8].

3.1. Sensitivity to localization errors

To this point, we have assumed that the precise locations of the
speakers are known. This is unrealistic, so we now examine the sen-
sitivity of our technique to localization errors. Figure 1 shows the
separation performance on a randomly selected subset of the syn-
thetic data after adding random time-delay errors at varying root-
mean-square (RMS) levels to the assumed source positions. We do
this only for the techniques that require knowledge of the source
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Fig. 1. Source separation performance as a function of TDOA esti-
mation error. The horizontal axis shows the RMS level of the syn-
thetically generated time delay noise on a log scale. These results are
average performance across all tested reverberation times and source
separations.

locations. (The two oracle-based techniques and convolutive BSS
do not require this.) Our results show that error levels up to 40 μs
RMS have only negligible effects on segmental SNR and segmen-
tal LSD performance. In [8], we show that time delay estimation
errors are typically smaller than this in a wide range of moderately
reverberant (below 400 ms reverberation time) and moderately noisy
(above 12 dB SNR) acoustic environments. This shows that our re-
sults obtained above using perfect knowledge should in fact apply to
realistically noisy localization estimates.

4. CONCLUSION

We have presented a simple and computationally ef cient state-space
model of speech that combines a speaker-independent GMM spec-
tral model with a time- and frequency-varying observation noise
model of intermicrophone phase to separate mixtures of two speak-
ers. We have demonstrated source separation in real and synthetic
reverberant environments, and have shown that our algorithm is ro-
bust to typical levels of localization error. Thanks to Trevor Dar-
rell, Michael Brandstein, John Fisher, and Michael Siracusa for their
help.
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