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ABSTRACT

While current post- ltering algorithms for microphone array appli-
cations can enhance beamformer output signals, they assume that
the noise is either incoherent or diffuse, and make no allowances
for point noise sources which may be strongly correlated across the
microphones. In this paper, we present a novel post- ltering algo-
rithm that alleviates this assumption by tracking the spatial as well
as spectral distribution of the speech and noise sources present. A
generative statistical model is employed to model the speech and
noise sources at distinct regions in the sound eld, and incremental
Bayesian learning is used to track the model parameters over time.
This approach allows a post- lter derived from these parameters to
effectively suppress both diffuse ambient noise and interfering point
sources. The performance of the proposed approach is evaluated on
multiple recordings made in a realistic of ce environment.

Index Terms— microphone arrays, beamforming, speech en-
hancement, post- ltering

1. INTRODUCTION

The use of microphone arrays has been extensively studied in the
literature as a means of improving the quality of sound capture in
scenarios where the use of a close-talking microphone is undesirable
[1]. Microphone array algorithms jointly process the signals from all
microphones to create a single-channel output signal with increased
directivity and thus higher SNR compared to a single microphone.
The output signal can be further enhanced by the use of a single-
channel post- lter. The post- ltering algorithms in [2–4] demon-
strate that applying a post- lter to the beamformer output can result
in signi cantly higher SNR compared to the beamformer alone.

While these post- ltering algorithms have been shown to be ef-
fective in several environments, they assume that the noise is either
incoherent or diffuse, and make no allowance for point noise sources
which may be strongly correlated across the microphones. In this
paper, we present a novel post- ltering algorithm that removes this
assumption by tracking the spatial as well as spectral distribution of
the speech and noise sources present.

In the proposed method, the sound eld spanned by the micro-
phone array is divided into sectors and the speech and noise in each
sector are modeled by individual probability distributions. The model
parameters in each sector are tracked and updated online using incre-
mental Bayesian learning. This gives two signi cant bene ts. First,
noise sources that are spatially distinct are modeled separately and
thus, more accurately. In addition, by incorporating spatial informa-
tion into our model, we can distinguish between speech that comes
from a desired target direction, and speech that comes from other di-
rections, which should be treated as interference. The performance
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Fig. 1. Block diagram of the proposed post- ltering algorithm.

of the proposed approach is evaluated on multiple real recordings
made in a realistic of ce environment.

2. BEAMFORMING AND POSTFILTERING

2.1. System architecture

In this work, we perform all processing in the short-time spectral
domain. We assume a speech signal X(ω, t) is captured by an ar-
ray of M microphones. The M signals captured by the micro-
phones Y(ω, t) = {Y1(ω, t), . . . , YM (ω, t)} are then processed
by an xed beamformer, e.g. delay-and-sum or MVDR, to produce
a single-channel output signal Z(ω, t). This output signal is then
processed by an adaptive post- lterH(ω, t) to generate an enhanced
output signal X̂(ω, t). This paper focuses on the design of an adap-
tive post- lter H(ω, t) that exploits the spectral information in the
beamformer output Z(ω, t) and the spatial information contained in
the array signals Y(ω, t). The overall architecture of the proposed
approach in shown in Figure 1.

2.2. Instantaneous direction of arrival as a feature vector

For a microphone array, the phase differences at a particular fre-
quency bin between the signals received at a pair of microphones
give an indication of the instantaneous direction of arrival (IDOA)
of a given sound source. Thus, the IDOA given by microphones i
and j is computed as

rij(ω, t) = � Yi(ω, t) − � Yj(ω, t) (1)

For an array ofM microphones, we can construct a vector of IDOA
estimates using the phase differences ofM−1 pairs of microphones

rωt = [r12(ω, t), r13(ω, t), . . . , r1M (ω, t)]T (2)

We note that the presence of both ambient noise and sensor noise
makes it impossible to ascertain the direction corresponding to a par-
ticular IDOA vector with absolute certainty.
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Fig. 2. The graphical model that captures the spatial distributions of
speech and noise. The arrows indicate the conditional dependencies
between variables.

Note that because we assume that all frequency subbands can be
processed independently, the frequency variable ω is removed from
all subsequent derivations for simplicity.

3. A MODEL FOR THE SPATIAL DISTRIBUTIONS OF
SPEECH AND NOISE

In order to perform effective speech enhancement, we would like
to model the speech and noise at all points in the working space of
the array. Because this corresponds to an in nite number of loca-
tions, we quantize the sound eld into a number of non-overlapping
regions or sectors. The goal then becomes to accurately model the
speech and noise in each sector.

To do so, we use the generative graphical model shown in Figure
2. In this model, a discrete random variable θ is used to represent the
sector of sound eld. A distribution p(θ) indicates the prior proba-
bility of each sector in the sound eld. Associated with each sector
is 1) a probability distribution p(r|θ) that models the IDOA vectors
in that sector, and 2) a binary random variable s that takes on one of
two values associated with the speech state, i.e. s = {speech, non-
speech}, also governed by an associated distribution p(s|θ). In turn,
the speech states (speech and non-speech) in a given sector have as-
sociated pdfs that model the spectral observations, p(Z|s, θ).

The total likelihood of this model is given by the joint probabil-
ity

p(Z, r, s, θ) = p(Z, r|s, θ)p(s, θ) (3)

= p(Z|s, θ)p(r|θ)p(s|θ)p(θ) (4)

where we note the conditional independence ofZ and r given θ. The
distributions of the spectral observations Z and the IDOA vectors r
are assumed to be Gaussian.

p(Z|s, θ) = N (Z; 0, σ2s,θ) (5)

p(r|θ) = N (r;μθ ,Φθ) (6)

where we have assumed the spectral observations Z are zero mean.
If we de ne λ to be the set of all parameters of this model, i.e.

λ = {σ2sθ, μθ ,Φθ , ∀ s, θ}, our goal is to estimate λ based on the
spectral values observed at the beamformer outputZ = {Z1, . . . , ZT }
and IDOA values R = {r1, . . . , rT } derived from the array signals
themselves. In the absence of any prior information about the model
parameters, the optimal estimate for their values can be obtained
through Maximum Likelihood (ML) parameter estimation. If some
knowledge about the model parameters is available in the form of a

prior distribution p(λ), then Maximum A Posteriori (MAP) estima-
tion can be performed. In either case, however, learning the model
parameters is not straightforward because for each observation pair
{Zt, rt}, the sector θ and speech state s that generated these ob-
servations are unknown and must be inferred. Inference in hidden
variable problems such as this one is typically performed using the
Expectation-Maximization (EM) algorithm [5]. EM operates by it-
eratively maximizing the conditional log likelihood of the complete
data (observations plus hidden variables), given the observed data.

While EM has been successfully applied in many hidden vari-
able problems, it has the signi cant drawback that it is a batch-mode
algorithm. This causes two related problems for adaptive speech
processing algorithms. First, because it requires a sequence of frames
to be accumulated before parameter estimation can be performed, it
is inherently unsuitable for online applications. In addition, because
the prior distribution is assumed xed over that time period, it cannot
accurately model time-varying parameters.

4. INCREMENTAL BAYES LEARNING OF THE MODEL
PARAMETERS

To remedy the batch-mode processing requirement of conventional
EM solutions, we employ incremental Bayes learning [6]. This
method allows MAP estimation using EM to be performed in an on-
line manner using a time-varying prior distribution over the model
parameters. At each time step, this adaptive prior distribution is
updated recursively using the posterior distribution over the hidden
variables computed at the previous time step.

In order to use this approach, we rst need to de ne a prior dis-
tribution over model parameters p(λ). In this work, we will restrict
ourselves to the online updating of the speech and noise variances,
and thus need to de ne priors for these parameters only. It will prove
mathematically convenient to model precisions (inverse variances),
rather than the variances directly. Following [6], we model the pre-
cisions using gamma distributions. Thus, we de ne the prior distri-
bution of νsθ = 1/σ2sθ as

p(νsθ|φsθ) = ν
(αsθ− 1

2 )

sθ exp(−βsθνsθ) (7)

where φsθ = {αsθ, βsθ} are the hyperparameters that characterize
the gamma distribution for sector θ and speech state s. The prior
over all model parameters λ can then be de ned as

p(λ|φ) =
�

s

�

θ

p(νsθ|φsθ) (8)

We can now de ne the MAP EM algorithm with incremental
Bayes learning. If we de ne Vt = {Zt, rt} to be the observed data
at frame t we can express the time-varying EM likelihood function
as

Q(λ, λ(t−1)) = E[log{p(Vt, s, θ|λ)}|Vt, λ(t−1)] (9)

=
�

s

�

θ

log(p(Vt, s, θ|λ))p(s, θ|Vt, λ(t−1)) (10)

The MAP estimate of λ at time t can be computed by combining
Q(λ, λ(t−1)) with the prior distribution p(λ|φ) to obtain the follow-
ing EM algorithm

E-step:

R(λ, λ(t−1)) = Q(λ, λ(t−1)) + ρ log p(λ|φ(t−1)) (11)

M-step:

λ(t) = argmax
λ

R(λ, λ(t−1)) (12)
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where ρ is a forgetting factor with 0 < ρ ≤ 1. The forgetting
factor controls the in uence of new input data relative to the past
observations.

To perform the E-step in (11), we need to compute the posterior
probability γ(t)sθ = p(s, θ|Vt) = p(s, θ|Zt, rt). This expression can
be computed exactly from the distributions in the model using Bayes
rule. However, in this work, we assume for simplicity that the speech
state and the sector are independent. While not strictly true, we have
found this to be a reasonable assumption in practice. Thus, we can
approximate the posterior as

γ
(t)
sθ ≈ p(θ|rt)p(s|Zt) (13)

where p(θ|rt) can be computed from (6) using Bayes rule as

p(θ|rt) = p(rt|θ)p(θ)/
�
θ′
p(rt|θ′)p(θ′) (14)

and the speech state posterior p(s|Zt) can be computed from a voice
activity detector (VAD) that outputs probability of speech activity in
each frequency bin, such as [7].

After computing γ(t)sθ , the model parameters are updated by per-
forming the M-step in (12). This is done by taking the derivative of
R(λ, λ(t−1)) with respect to λ, setting the result equal to zero,and
solving for λ in the usual manner. This leads to the following update
expression for the speech and noise variances in each sector.

σ
2(t)
sθ =

1

ν
(t)
sθ

=
2ρβ

(t−1)
sθ + γ

(t)
sθ |Zt|2

ρ(2α
(t−1)
sθ − 1) + γ

(t)
sθ

(15)

As expected, the variances for speech and noise in all sectors are
updated as a linear combination of the previously seen data (repre-
sented by the hyperparameters αsθ and βsθ) and the current spectral
observation Zt. However, as shown in (15), not all model parame-
ters are updated uniformly. The observed data in the current frame
will in uence the model parameters in a particular sector and speech
state in proportion to its posterior probability.

At each time step, the hyperparameters φ of the prior distribution
p(λ|φ) are also updated using the same maximization procedure.
This generates the following updated hyperparameters

α
(t)
sθ = ρ

�
α
(t−1)
sθ − 0.5

�
+ 0.5 + 0.5γ

(t)
sθ (16)

β
(t)
sθ = ρβ

(t−1)
sθ + 0.5γ

(t)
sθ |Zt|2 (17)

which de ne a new prior distribution p(λ|φ(t)) for the next time step.

5. CONSTRUCTING A POST-FILTER FROM THE
SPATIAL DISTRIBUTIONS OF SPEECH AND NOISE

The learning algorithm described in the previous section generates
online MAP estimates of the variances of the speech and noise in
every frequency bin and every sector. To create a post- lter, the
spatially-distinct parameter estimates are rst merged into a single
speech variance and a single noise variance. This is done by mar-
ginalizing the speech and noise distributions over all sectors. Thus,
for frame t, the global speech variance is computed as

σ
2(t)
s=1 =

�
θ

γ
(t)
s=1,θσ

2(t)
s=1,θ/

�
θ

γ
(t)
s=1,θ (18)

Similarly, the global noise variance is computed as

σ
2(t)
s=0 =

�
θ

γ
(t)
s=0,θσ

2(t)
s=0,θ/

�
θ

γ
(t)
s=0,θ (19)

In our post- lter, we assume that the sector that contains the
desired target signal is known a priori. We want the post- lter to
suppress both noise that comes from any direction as well as speech
that originates from a direction (sector) other than our target sector
θT . In order to do so, we de ne η(t) as the total posterior probability
that the observed signal was speech and came from a direction other
than the desired target direction. This term can be computed as

η(t) =
�
θ �=θT

γ
(t)
s=1,θ (20)

Using η(t), we can compute the nal noise estimate for the post- lter
as

σ
2(t)
N = η(t)σ

2(t)
s=1 + (1 − η(t))σ2(t)s=0 (21)

Thus, if the current frame has a high probability of being either
speech that originated from the target sector or noise from any sec-
tor, η(t) will be close to 0, and the noise estimate will be dominated
by the noise variance σ2(t)s=0. On the other hand, if the posteriors
indicate that the current frame is speech that originates from an in-
terfering sector, η(t) will approach 1, and the noise estimate will be
dominated by that sector’s speech model.

The nal noise estimate in (21) can then be used to create a post-
lter using any of the gain-based suppression rules in the literature,

e.g. [8]. In this work, we employ the Wiener noise suppression rule
based on a priori SNR estimation. The a priori SNR is estimated as

ξ(t) = |Zt|2/σ2(t)N − 1 (22)

and is used to generate the nal post- lter as

Ht = ξ
(t)/(1 + ξ(t)) (23)

Of course, the decision-directed approach proposed in [8] can be
used to smooth the estimates of ξ(t) if desired. Finally, the lter Ht
is applied to the array output to generate the nal output signal as

X̂t = HtZt (24)

6. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed post- ltering algorithm,
we performed a series of experiments on microphone array data
recorded in an of ce environment. We used a 4-element linear mi-
crophone array with a length of 190 mm. The microphones in the
array are electret directional elements with a cardioid directivity pat-
tern. Incoming audio was sampled at 16 kHz and segmented into
20 ms frames with a 10 ms overlap. The frames were then converted
to the frequency domain using an MCLT [9]. The arrays signals
were processed by a delay-and-sum beamformer. The output of the
beamformer was then processed by the proposed post- lter.

6.1. Training the IDOA distributions

In order to compute the sector posteriors using (14), the Gaussian
parameters in (6) must be estimated. To train these parameters, syn-
thetic training data was generated using acoustic propagation princi-
ples and common noise models. In these experiments, the working
area of the array spanned from −90o to 90o with 0o de ned to be
broadside, directly in front of the array. This spatial region was di-
vided to 18 sectors with a 10o sector width. In each sector, 100
locations were randomly generated from a uniform distribution of
positions within that sector. Each sample location is de ned by its
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position using a radial coordinate system, i.e. cl = {φl, θl, ρl}. For
given frequency ω, the signal gain (and delay) to each microphone
m is:

Gm(l, ω) = Um(ω, cl)
exp(−j2πωv ‖ cl − pm ‖)

‖ cl − pm ‖ (25)

where pm are the microphone coordinates, ‖ cl−pm ‖ is the Euclid-
ean distance between the microphone and the sound source, and v
is the speed of sound. Um(ω, cl) is a model of the microphones
response obtained from acoustical measurements. To model corre-
lated noise gain, the response of a signal with random amplitude and
position in the space is modeled as :

NCm(l, ω) = N (0, ψ−1)Um(ω, cl)
exp(−j2πωv ‖ cr − pm ‖)

‖ cr − pm ‖
(26)

where cr is a random position in the space and ψ is the signal to
correlated noise ratio. Finally, uncorrelated noise gain is modeled for
each microphone asNNm(l, ω) = N (0, ζ−1), where ζ is the signal
to non-correlated noise ratio. The signal model for each microphone
is the superposition of all three components:

Ym(l, ω) = Gm(l, ω) +NCm(l, ω) +NNm(l, ω) (27)

For a given value of ψ and ζ, a set of samples were generated for
the microphone array and converted to IDOA vectors using (1) and
(2). Multiple sets of training data were created using combinations
of ψ = 20, 10 and 5 dB and ζ = 30, 25 and 20 dB. All sets were then
merged together to train the means and covariances of the IDOA pdfs
in (6).

6.2. Experiments

We evaluated the proposed post- lter using recordings made in three
of ce scenarios. All recordings contained a high degree of ambient
noise due to the presence of several computers and an air conditioner.
In the rst recording, the user is located directly in front of the array
at a distance of 1 m. In the second recording, the user remained in
the same position and a radio playing music was placed at −55o. A
third recording was made with two male talkers both approximately
1 m from the array, one at −20o and the other at 40o. The talkers
alternated reading short passages and their speech did not overlap. In
this evaluation, the talker at −20o was considered the target speaker.

For each of these recordings, we compared the performance of
the proposed post- lter to a conventional single channel noise sup-
pressor, obtained by running the proposed algorithm under the as-
sumption that the working area of the area is considered a single
sector. We maintain a single model for speech and a single model for
noise and the models are updated strictly on the basis of the speech
state posterior generated by the VAD. Employing this noise estima-
tion process results in a single-channel noise-suppression algorithm
comparable to algorithms such as [10]. By using this algorithm, it
enables us to directly evaluate the bene t of maintaining spatially
distinct speech and noise models, while keeping all other aspects of
the algorithms consistent. Table 1 compares the SNRs obtained at
the output of the beamformer, the output of the single channel post-
lter, and the output of the proposed post- lter. As the table shows,

incorporating the spatial distributions of the speech and noise re-
sults in improved performance over a conventional single-channel
approach.

Recording condition DS only DS+PF DS+SPF

Single speaker in an of ce 16.2 25.8 27.5
Single speaker + off-axis radio 16.6 22.9 24.7
Single talker + off-axis talker 10.9 11.4 15.2

Table 1. SNR (dB) obtained using a delay-and-sum beamformer
alone (DS), with a traditional single-channel post- lter (DS+PF) and
the proposed spatial post- lter (DS+SPF).

7. CONCLUSIONS

In this paper, we have presented a novel probabilistic model that can
be used to track both the spectral and spatial distributions of speech
and noise using a microphone array. The parameters of the model
are learned and adapted using an online implementation of the EM
algorithm called incremental Bayes learning. We have shown how
this model can be used to derive an adaptive post- lter that can be
applied to a beamformer output. Unlike previous post- lter algo-
rithms, the proposed model makes no assumptions about the nature
of the noise, and as a result, it can accurately model and then sup-
press both diffuse and directional noise sources as well as interfering
speech sources. The bene t of the proposed approach over a conven-
tional single channel noise suppressor was demonstrated using real
recordings made in multiple of ce scenarios.
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