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ABSTRACT

Spatial audio coding and enhancement address the growing commer-
cial need to store and distribute multichannel audio and to render
content optimally on arbitrary reproduction systems. In this paper,
we discuss a spatial analysis-synthesis scheme which applies prin-
cipal component analysis to an STFT-domain representation of the
original audio to separate it into primary and ambient components,
which are then respectively analyzed for cues that describe the spa-
tial percept of the audio scene on a per-tile basis; these cues are
used by the synthesis to render the audio appropriately on the avail-
able playback system. The proposed framework can be tailored for
robust spatial audio coding, or it can be applied directly to enhance-
ment scenarios where there are no rate constraints on the intermedi-
ate spatial data and audio representation.

Index Terms— spatial audio coding, multichannel audio, up-
mix, principal component analysis

1. INTRODUCTION

Low-rate coding of audio signals is now a cornerstone of consumer
electronic devices and systems. While audio content is still primar-
ily in stereo format, multichannel audio is becoming increasingly
available and popular; there is thus a growing need to distribute
and store multichannel content, which in turn necessitates further
advances in compression technologies – since discrete coding of in-
dividual channels is insufficient to satisfy storage and delivery band-
width constraints. Furthermore, multichannel loudspeaker config-
urations are becoming more commonly deployed in home theater
and music systems, which creates a commercial need for expanding
legacy stereo content to a multichannel format to make the best use
of the available rendering resources, i.e. however many loudspeakers
are present. A recently emerging approach known as spatial audio
coding (SAC) addresses the need to efficiently compress multichan-
nel audio, and a range of upmix techniques are being developed to
enhance the reproduction of stereo signals over multichannel loud-
speaker formats. In this paper, we describe an approach to spatial
audio analysis-synthesis which enables coding at low data rates and
flexible rendering and spatial enhancement at the decoder; the frame-
work is also applicable to enhancement scenarios where there is no
intermediate coding channel, i.e. where there is no need for low-rate
communication between the analysis and synthesis modules.

In most SAC schemes proposed in the literature, the multichan-
nel input audio is analyzed in a pairwise fashion to extract interchan-
nel information such as signal level differences and coherence [1].
These inter-channel relationships are sent as side information with
a coded downmix signal; at the decoder, the downmix is distributed
over the multichannel loudspeaker system using the inter-channel
data to approximately recreate the inter-channel relationships of the
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Fig. 1. Block diagram of primary-ambient spatial coding and en-
hancement system. The modules in the dashed box are needed for
coding but not for some enhancement scenarios.

input signals [2]. If the output format (speaker layout) does not
match the input format (channel configuration), the rendered audio
scene will be inconsistent with the input signal. The spatial audio
coding system proposed in [3, 4] overcomes this difficulty by using
format-independent universal spatial cues as the side information;
these cues describe the audio scene in terms of spatial-perceptual
parameters without reference to the channel configuration, thereby
enabling consistent rendering on arbitrary output systems as well as
flexible modifications or enhancements.

The system discussed in this paper expands on the SAC frame-
work of [3, 4] by incorporating a primary-ambient decomposition,
distinct spatial analysis for the primary and ambient components,
modification of the spatial cues prior to synthesis, and spatial en-
hancement of the rendered components. Fig. 1 shows a block di-
agram of the spatial analysis-synthesis system. After conversion to
the short-time Fourier transform (STFT) domain or some other time-
frequency representation (not shown in Fig. 1), each channel signal
is decomposed into primary and ambient components; a multichan-
nel principal component analysis (PCA) algorithm to achieve this
separation is discussed in Section 2. The primary and ambient com-
ponents are then analyzed for spatial information; using a vector the-
ory of sound localization, they are respectively aggregated across the
channels into a spatial percept at each time and frequency. Section
3 discusses this spatial analysis as well as consistent synthesis based
on the spatial cues derived from the input scene.

2. PRIMARY-AMBIENT DECOMPOSITION

In spatial audio analysis-synthesis, it is effective to treat discrete
point-like sources and diffuse sounds differently. For instance, a
point source should be rendered at a precise location via an appropri-
ate discrete panning method. Diffuse or ambient sounds call for an
alternate rendering technique, perhaps with additional decorrelation
introduced to create a desired sense of spaciousness or envelopment;
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an example is the use of ambience extracted from stereo signals to
generate synthetic surround signals for 2-to-5 upmix [5]. Since a
distinction between primary and ambient components is useful for
high-fidelity enhancement and reproduction, we are interested in a
multichannel primary-ambient signal decomposition. In [5], an ap-
proach is proposed which involves creating a time-frequency mask
to extract the ambience from a stereo input signals. The mask is
based on the cross-correlation between the left-channel and right-
channel signals, however, so this approach is not immediately ap-
plicable to the problem of extracting ambience from an arbitrary
multichannel input. To use any such correlation-based method in
this higher-order case would call for a hierarchical pairwise corre-
lation analysis, which would entail a significant computational cost,
or some alternate measure of multichannel correlation. Rather than
take such an approach, we incorporate the desired properties of the
primary and ambient components to derive a multichannel separa-
tion algorithm based on principal component analysis (PCA).

2.1. Multichannel decomposition

The multichannel primary-ambient decomposition algorithm proposed
in this section is based on a signal model wherein each STFT sub-

band is treated as a vector in time and each channel vector �Xm is
modeled as a sum of a primary component �Pm and an ambience

component �Am; the primary components of the various channels are
scaled versions of a common unit vector �v:

�Xm[k, l] = [xm[k, l] xm[k, l − 1] · · · ]T (1)

�Xm[k, l] = �Pm[k, l] + �Am[k, l] (2)

= ρm[k, l]�v [k, l] + �Am[k, l] (3)

where k is a subband index and l is a time index. In the following,
the [k, l] indices will at times be dropped to simplify the notation.

If the channel vectors defined in Eq. (1) are accumulated into a
signal matrix

X =

[
�X1[k, l] �X2[k, l] �X3[k, l] · · · �XM [k, l]

]
, (4)

the primary-ambient signal model can be expressed as

X = P + A (5)

= �v [ρ1 ρ2 · · · ρM ] +

[
�A1

�A2 · · · �AM

]
. (6)

To fit the signal to this model, we make a number of assumptions
that are reasonable for typical audio content: the primary compo-
nents have higher energy than the ambience; the ambience energy in
the various channels is relatively balanced; the primary and ambient
components are orthogonal in signal space, i.e. uncorrelated.

To derive the primary-ambient signal model of Eq. (6) according
to the above assumptions, the key task is to find the unit vector �v
which best describes the set of channel vectors in signal space. Then,
each channel can be separated into orthogonal primary and ambient
components by projecting onto �v:

�Pm =
(
�vH �Xm

)
�v (7)

�Am = �Xm − �Pm. (8)

The projection �Pm is then the primary component of the m-th chan-

nel signal, and the difference �Am is the ambient component. Note

that by definition the primary and ambient components add up to the
original, so no signal information is lost in the decomposition.

To this point, we have not yet discussed how to actually deter-
mine the primary unit vector �v. The best choice of course depends
on the optimization criterion for the signal model. If we adhere to
the assumption that the primary component should have maximal
energy, then a reasonable optimization criterion is the mean-squared
error. Namely, the best �v is the one that results in the most energy in
the primary component, i.e. it minimizes the energy in the residual
ambience. While the resulting optimization is well known, we out-
line it here for the sake of completeness. First, it can be easily shown
that for any given �v, the minimization of the ambience energy yields

tr(AHA) = tr(XHX) − �v XXH�v. (9)

The optimal �v in a mean-squared sense is then the vector that max-
imizes the term �vHXXH�v, which is the sum of the magnitude-
squared correlations between �v and the channel signals. The max-
imum value of �vHXXH�v for a unit-vector �v is attained when �v is
the eigenvector of XXH with the largest eigenvalue; this is a basic
result from linear algebra and is straightforward to prove, e.g. using
Lagrange multipliers. The eigenvector with the largest eigenvalue is
the principal component in the PCA representation of a data matrix;
thus, maximizing the energy of the primary component leads to a
PCA-based primary-ambient decomposition.

A brute-force computation of the PCA primary-ambient decom-
position consists of first forming the covariance matrix R = XXH

and computing its eigenvalues {λi} and eigenvectors {�vi}. The
largest eigenvalue λp and its corresponding eigenvector �vp are then
determined. The primary component is then computed for each

channel as the projection of �Xm onto �vp, and the ambience is com-
puted as the projection residual. Of course, this approach to multi-
channel PCA primary-ambient separation is computationally costly
since it involves an explicit eigendecomposition. It can be imple-
mented more efficiently by taking into account that only the eigen-
vector of R with the largest eigenvalue is needed for the signal model
of Eq. (6). This eigenvector can be derived, or at least approximated,
by starting with any �v0 and iterating the following steps [6]:

�v0 ←− R�v0 (10)

�v0 ←− �v0

‖�v0‖ (11)

The vector �v0 will converge to the eigenvector with the largest eigen-
value, with a faster convergence if the eigenvalue spread is large. A

practical starting value for �v0 is the �Xm with the largest norm, since
that will dominate the principal component computation. With this
approach, the primary-ambient decomposition can be computed at a
more reasonable cost than via a full eigendecomposition.

2.2. Decomposition of stereo signals

The application of PCA to the analysis of multichannel audio for
coding or enhancement has not been widely considered in the litera-
ture; an approach for scalable representation is proposed in [7], but
the PCA is applied in the frequency dimension rather than on the
subband time-domain signals as in the method of Section 2.1. For
the stereo case, which is important for coding but also essential for
enhanced rendering or upmix, PCA decompositions have been ap-
plied for spatial analysis-synthesis of time-domain signals [8] and
QMF subband signals [9]. In these approaches, the decompositions
are derived via gradient-descent iteration; in the following, we sim-
plify the multichannel decomposition for the two-channel case and
provide a closed-form solution.
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Fig. 2. Orthogonal primary-ambient decomposition of a stereo sig-

nal { �XL, �XR} using PCA.

At time l, the first step in the PCA primary-ambient decompo-
sition of stereo signals is to compute the cross-correlation rLR[k, l]
and the auto-correlations rLL[k, l] and rRR[k, l] for each k, where

rij [k, l] = �XH
i [k, l] �Xj [k, l]. (12)

Note that the input channels are designated with L and R subscripts
(for “left” and “right”) instead of numerals. The largest eigenvalue
of the matrix XXH is then computed according to

λ =
1

2

[
rLL + rRR +

(
(rLL − rRR)2 + 4|rLR|2

) 1
2

]
. (13)

This eigenvalue is then used to determine the principal vector

�v = rLR
�XL + (λ − rLL) �XR, (14)

which here is not scaled to unit-norm. To enable scaling and an en-
suing orthogonal projection, the magnitude of �v and its correlations
with the channel signals are computed:

rvv = �vH�v (15)

rvm = �vH �Xm. (16)

The primary component is then estimated for each channel as the
projection of the channel signal onto the principal vector �v:

�Pm =

(
rvm

rvv

)
�v, (17)

where the division is protected against singularities by thresholding;
if rvv[k, l] < ε, meaning that no reliable principal component has

been found, we set �Pm[k, l] = 0. The ambience is then computed as

the projection residual as in Eq. (8): �Am = �Xm − �Pm. A depiction
of this PCA-based decomposition is given in Fig. 2.

2.3. Computation and performance considerations

In the stereo case, the correlations needed for the PCA decomposi-
tion can be approximated with a recursive formulation:

rxy[t] =
∑

i

x[t − i]∗y[t − i] (18)

r̂xy[t] = (1 − μ)x[0]∗y[0] + μ r̂xy[t − 1] (19)

where these are lag-0 cross-correlations at time t. With this approach
to approximating the time-varying inner product between two signal
vectors, is not necessary to fix the time duration for the computation,
nor is the associated memory required. Instead, the effective time

length of the inner product is determined by the forgetting factor μ,
which can be adaptively adjusted as needed; and, the computation
can be done in place without using buffers to retain the signal his-
tory. In the multichannel case, a similarly efficient scheme would
be desirable to avoid the computational cost of the iterative princi-
pal vector determination; approaches to running PCA decomposition
may be of interest in this regard [10].

Beyond the computational concerns, it is also important to note
that the performance of the PCA primary-ambient decomposition is
limited by how well the input signal satisfies the model assumptions
given in Section 2.1. For instance, if the primary component does
not have substantially more energy than the ambient component, the
ambience will be present in the principal PCA component. This
is not usually problematic, but it can lead to suboptimal rendering
for purely diffuse sounds as well as incorrect or unstable directional
analysis of the true primary content if the ambience is not uniformly
spatially distributed. While in most cases the assumptions are largely
valid and the PCA method is not compromised, it is of interest to
improve the handling of atypical cases beyond the ad hoc methods
currently employed to detect and treat these cases, which are based
on experimentally tuned correlation threshold tests.

3. SPATIAL ANALYSIS-SYNTHESIS

Spatial analysis-synthesis is the process of extracting spatial infor-
mation from an audio scene and using that information to drive a
rendering algorithm. The following sections describe an analysis-
synthesis scheme based on a vector theory of sound localization ap-
plied on a per-tile basis to the time-frequency signal representation.

3.1. Analysis

As shown in Fig. 1, the primary and ambient components are sepa-
rately analyzed for spatial information after the primary-ambient de-
composition is carried out. In the spatial analysis-synthesis frame-
work, each time-frequency tile is treated as a distinct sound event.
The analysis determines a perceived location for each time-frequency
event in the audio scene; for each time and frequency, the analysis
derives coordinates (r[k, l], θ[k, l]), or equivalently a time-frequency

direction vector �d[k, l], which describes where the time-frequency
sound event is located within a circle of unit radius centered at the
listener. This derivation is carried out by a weighted sum of format
vectors corresponding to the input channel positions, e.g. unit vectors
in the directions {−30◦, 30◦, 0◦,−110◦, 110◦} for a standard five-
channel format. This vector sum is based on the theory proposed in
[11]; for a sound event broadcast from directions �qm (corresponding
to the channel angles), the perceived direction is given by the vector

�g[k, l] =
∑
m

αm[k, l]�qm, (20)

where in our framework the weights αm are given by

αm[k, l] =
|xm[k, l]|2∑

i |xi[k, l]|2 . (21)

Since the weights are normalized such that
∑

m αm = 1, this vector
�g[k, l] is constrained in magnitude by an inscribed polygon as shown
in Fig. 3. A linear algebraic method to expand the encoding locus to
the full listening circle is proposed in [3] and derived rigorously in
[4]; it yields a robust direction vector

�d[k, l] = r[k, l]
�g[k, l]

‖�g[k, l]‖ (22)
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Fig. 3. Depiction of input channel formats (diamonds) and the cor-
responding encoding loci (dotted) of the Gerzon vector of Eq. (20).

which is in the angular direction of �g but has a modified radius

r =
∥∥∥[�qi �qj

]−1
�g
∥∥∥

1
(23)

where �qi and �qj are the channel format vectors which bracket �g;
the radius is thus the sum of the coefficients of the representation
of �g in the basis defined by �qi and �qj . This radius ranges from
zero for non-directional events to unity for discrete events that are
purely pairwise-panned between adjacent channels [3, 4]. It should
be noted that this expanded approach is not necessarily required for
the ambience spatial analysis since the ambience is typically not
highly directional and is indeed well represented by the vector �g.

3.2. Synthesis

Consistent synthesis of the input audio scene is achieved by deriv-
ing multichannel panning coefficients based on the time-frequency

direction vectors �d[k, l] derived in the analysis – such that analy-
sis of the synthesized scene would yield the same direction vectors.
One approach for deriving such coefficients is to use radial panning
between pairwise weights and non-directional weights:

�β[k, l] = r[k, l]�σ[k, l] + (1 − r[k, l])�ε[k, l] (24)

where �σ contains non-zero coefficients only for the two synthesis

channels which bracket the direction vector �d[k, l]. The coefficient
vector �ε is in the null space of the synthesis format matrix, i.e. the
matrix whose columns are the unit format vectors in the directions
of the output channels (loudspeaker positions). It is straightforward
to show that this panning scheme leads to consistent synthesis [3].
Note that an optimization algorithm to derive non-directional pan-
ning weights for arbitrary loudspeaker configurations is given in [4].

In the spatial synthesis, the above panning scheme is applied in-
dependently to the primary and ambient components identified by
the analysis. For the ambience synthesis, it is desirable to also in-
clude different allpass filters in each channel to increase the sense of
spaciousness in the reproduction. Furthermore, for enhanced render-
ing where consistent synthesis is not a constraint, separate process-
ing can be applied to the primary and ambient components to achieve
a variety of effects. For instance, the ambient components extracted
from a stereo signal can be distributed to surround channels for up-
mix [5], or the primary components can be spatially redistributed or
otherwise modified prior to synthesis [3, 5].

4. SUMMARY AND FUTURE WORK

We have presented a general spatial analysis-synthesis method based
on a PCA primary-ambient decomposition of multichannel audio in-
put; the PCA decomposition algorithm is developed for the multi-
channel case and a closed-form solution is provided for the stereo

case. We described localization analysis based on a vector theory;
this is applied separately to the primary and ambient components to
derive direction vectors that describe the spatial percept of each time-
frequency component of the audio scene. These spatial cues are ef-
fective for low-rate spatial audio coding and for enhanced rendering.
Future research includes improving the performance of the PCA for
atypical signals, reducing the computational cost of the multichan-
nel decomposition, and assessing the fidelity with respect to other
analysis-synthesis schemes [12, 13]. A variety of enhancements
based on this analysis-synthesis model are also under development,
e.g. modification of the spatial cues for active upmix, and optimized
independent rendering of the primary and ambient components for
generalized upmix [14] and improved headphone listening.
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