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ABSTRACT

In this paper we propose two novel methods for preserving the spa-
tial information in source separation algorithms. Our approach is
applicable to any source separation algorithm and is based on an ad-
ditional supervised adaptive ltering with the reference signals gen-
erated by the source separation system. If a special constrained opti-
mization scheme is applied to derive the source separation algorithm
then the novel approach can be simpli ed. The quality of the spatial
representation and the separation performance of both methods and
two state-of-the-art approaches from the literature have been eval-
uated by a MUSHRA listening test according to the relevant ITU
recommendation showing that the novel methods clearly outperform
the state-of-the-art approaches.

Index Terms— Spatial Information, Spatialization, Source Sep-
aration, Hearing Aids, Spatial Auditory Displays

1. INTRODUCTION

In several applications as, e.g., hands-free communication interfaces,
it is desirable to extract the clean source signals from multiple lin-
ear mixtures in complex acoustic environments. The ability of hu-
mans to understand speech in such complex scenarios has mainly
been attributed to the binaural processing strategy. Thus, especially
in applications with multi-channel reproduction systems it is im-
portant that the adaptive signal processing algorithms which aim at
suppression of interfering sources preserve the spatial information.
This allows the human auditory system to further improve the in-
terference suppression by exploiting the spatial information on the
remaining sources. Important examples of stereo reproduction are
headset-based spatial auditory displays (e.g., for air traf c control)
[1], or bilateral hearing aids. In a recent study [2] it has been shown
that hearing impaired persons also bene t from binaural cues such
as interaural time and level differences. Thus, it is important that
the algorithms inside the hearing aid do not change these spatial
cues. However, current state-of-the-art bilateral hearing aids have
a negative impact on these binaural cues and interference suppres-
sion techniques applied independently at each ear can have an addi-
tional negative impact on localization performance [2]. Therefore,
recently several binaural algorithms have been published which aim
at interference suppression while maintaining the spatial cues. So
far, mainly adaptive beamforming techniques [3, 4] or multi-channel
Wiener lter methods [5] have been investigated.

In this paper, we deal with blind source separation (BSS) meth-
ods which are an attractive alternative to beamforming as no a-priori

1Now with Microsoft Corporation, Redmond, WA, USA.

knowledge on source and sensor positions is required. BSS algo-
rithms have the advantage that they are solely based on the funda-
mental assumption of mutual statistical independence of the differ-
ent source signals. Thus, the separation is achieved by forcing the
output signals to be mutually statistically decoupled up to joint mo-
ments of a certain order. Due to the insensitivity with respect to the
sensor positions, BSS becomes especially attractive if the wireless
link between the bilateral hearing aids, which is currently only used
to transmit control information, would allow simultaneous process-
ing of the acoustic signals from both devices. Moreover, in contrast
to previous methods [5], no voice-activity detector is needed.

Conventional BSS approaches yield monaural estimates of the
separated source signals. However, due to the reasons explained
above it is desirable to preserve the spatial information of the acous-
tic environment. So far, the few publications on BSS algorithms pre-
serve spatial cues either by post-processing of the estimated sources
[6, 7] or by introducing a second cost function which constrains the
set of possible solutions [8, 9]. In this paper, these existing ap-
proaches will be brie y reviewed and two novel approaches which
maintain the spatial information will be presented. This will be fol-
lowed by a formal experimental evaluation of the existing and pro-
posed methods using a subjective listening test according to [10].

2. SUPPRESSING INTERFERERS BUT PRESERVING
SPATIAL INFORMATION

2.1. Mixing and Demixing Model
The mixing of the original sources is modeled by nite impulse re-
sponse (FIR) lters of length M as encountered, e.g., in acoustic
environments, leading to the sensor signals

xp(n) =

Q∑
q=1

M−1∑
κ=0

hqp,κsq(n− κ) (1)

where hqp,κ, κ = 0, . . . , M − 1 denote the coef cients of the FIR
lter model from the q-th source sq , q = 1, . . . , Q to the p-th sensor

xp, p = 1, . . . , P . Conventional source separation algorithms aim
at nding a corresponding demixing system, whose output signals
yq(n) are described by

yq(n) =

P∑
p=1

L−1∑
κ=0

wpq,κxp(n− κ), (2)

where wpq,κ, κ = 0, . . . , L − 1 denote the current weights of the
multiple-input multiple-output (MIMO) lter taps from the p-th sen-
sor channel xp(n) to the q-th output channel. The lter taps of the
demixing system can be estimated by beamforming or BSS tech-
niques.
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Fig. 1. Block diagram of BSS preserving spatial information.

In (2) and Fig. 1 it can be seen that conventional source sepa-
ration algorithms estimate only monaural representations yq of the
separated sources. As a consequence the spatial information about
the sources obtained by the multiple sensors is lost in yq . In contrast
to this, the preservation of spatial information requires estimation of
the contribution of each desired source signal sq to each sensor sig-
nal xp which is given as sq(n) ∗ hqp,n. Thus, for each source sq we
have to estimate P output signal components yq,x1

, . . . , yq,xP
lead-

ing to a total of PQ output signals (Fig. 1). In most applications it is
suf cient to extract only one desired source and thus, only P outputs
yq,x1

, . . . , yq,xP
have to be estimated. The decision as to which of

the Q output signals yq corresponds the desired source could, e.g.,
be solved by using the spatial information [11]. However, this topic
exceeds the scope of this paper. Moreover, in the remainder of this
paper we assume that the number of active source signals Q is less
or equal to the number of microphones P .

2.2. Existing Approaches

So far, only a few approaches in literature are able to at least par-
tially maintain spatial information. They can be classi ed into post-
processing schemes [6, 7] and methods which add a second cost
function to constrain the set of possible solutions [8, 9].

2.2.1. Post-Processing Methods

The post-processing approach proposed in [7] is motivated by the
relation between blind system identi cation and blind source separa-
tion [12] for a certain class of broadband BSS algorithms (e.g., [13]).
For instance, for P = 2 and the lter length L = M , a demixing
system that ensures perfect separation is given by the mixing system
with the channel-wise indices reordered [12] yielding:

w11 = α1h22, w12 = −α2h12,

w21 = −α1h21, w22 = α2h11.
(3)

Hence, the demixing FIR lters wpq = [wpq,0, . . . , wpq,L]T

are scaled estimates of the mixing FIR lters hqp =
[hqp,0, . . . , hqp,M ]T with the scaling factors denoted asα1, α2. Spa-
tial information is mainly contained in the time delays and level dif-
ferences between the different mixing lters hqp. Thus, based on
(3) it was suggested in [7] that the spatial cues can be recovered by
convolving the monaural BSS output signals yq with the appropriate
demixing lters to generate a spatialized version of the signal. For
the case P = 2 the spatialized outputs are given as:

y1,x1
(n) = y1(n) ∗ w11,n, y2,x1

(n) = y2(n) ∗ w21,n,

y1,x2
(n) = y1(n) ∗ w12,n, y2,x2

(n) = y2(n) ∗ w22,n.
(4)

In [7] also an equation for obtaining yq,xp for arbitrary P was given.
It should be pointed out that by using (4) the separated source in
yq and the remainder of the interfering sources which could not be
suppressed completely will be projected to the same spatial position.

Another related post-processing method was described earlier
in [6] and is based on the inversion of the demixing system in the

discrete Fourier transform (DFT) domain. In [7] both approaches
were compared, both theoretically and experimentally, and it was
shown that the method based on (4) yields better results. Therefore,
post-processing based on (4) is included as a reference algorithm in
the experiments in Sect. 3.

2.2.2. Constrained Optimization Methods

In conventional BSS the mutual information between the ouput
channels yq is minimized. A measure of statistical independence
which is often used as optimization criterion for non-Gaussian pro-
cesses is the Kullback-Leibler divergence (KLD) between the esti-
mate of the P -dimensional joint probability density function (pdf)
p̂y,P of all channels and the univariate pdfs p̂y,1 of the individual
channels which is given as

JMCBD(n) = Ê

{
log

p̂y,P (y(n))∏P

q=1
p̂y,1(yq(n))

}
, (5)

where y(n) = [y1(n), . . . , yP (n)]T , and Ê{·} is the estimate of the
statistical expectation. As the temporal dependencies of the source
signals (e.g., speech signals) are not modeled in (5) the output signals
yq will become temporally whitened and thus the algorithms derived
from JMCBD perform multi-channel blind deconvolution (MCBD).
To avoid this whitening effect and also to preserve the spatial in-
formation, the conventional criterion JMCBD originally developed
for i.i.d. data signals was complemented in [8] by a second update
equation. For binaural signals, i.e., P = 2 as addressed in [8], the
structure shown in Fig. 2 has been proposed. It can be shown that the
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Fig. 2. Block diagram of the constrained optimization method and
optimum solution exemplarily shown for P = 2.

update equation proposed in [8] is based on an optimization criterion
combining two KLDs leading to

J (n) = JMCBD(n) + β Ê

{
log

p̂ỹ,P (ỹ(n))∏P

q=1
p̂ỹ,1(ỹq(n))

}
(6)

with ỹq = xq(n − l) − yq(n) being the BSS output signal yq sub-
tracted from the sensor signal xq which is delayed by l samples, i.e.,
convolved by δ(n − l) (see Fig. 2). The combination of the chan-
nels is given as ỹ = [ỹ1, ỹ2]

T . The parameter β (which is set equal
to one in [8]) allows a trade-off between both cost functions. The
optimum solution of the simultaneous minimization of both KLDs
combined in J is given as [8]

ỹ1 = x1(n− l)− y1(n) = y2,x1
(n) (7)

ỹ2 = x2(n− l)− y2(n) = y1,x2
(n) (8)
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y1(n) = y1,x1
(n) (9)

y2(n) = y2,x2
(n) (10)

and thus yields separated signals with their spatial information pre-
served. An extension to P > 2 can be found in [9]. This is to the
authors’ knowledge the only approach where a criterion to preserve
spatial information is incorporated in the BSS optimization criterion
and thus this method is evaluated experimentally in Sect. 3.

2.3. Novel Approaches

As the rst of the two novel approaches an adaptive post-processing
method will be explained which is applicable to any BSS algorithm.
Based on this method we discuss a constrained optimization scheme
where the supervised adaptive lters of the previous concept may be
omitted by introducing the minimal distortion principle (MDP) [14].

2.3.1. Post-Processing by an Adaptive Multi-Channel Interference
Canceller

The structure of this approach is depicted in Fig. 3 for simplicity
for the case P = 2. The demixing system wpq yielding the sepa-
rated sources yq can be determined by any BSS algorithm, e.g., the
algorithm proposed in [13]. For many applications the extraction
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Fig. 3. Preservation of spatial information for P = 2 and for y1

containing the monaural representation of the desired source.

of a single source is suf cient so that the output channel containing
the desired source has to be identi ed. Due to the blind identi cation
property of the demixing system [12] obtained by the BSS algorithm
in [13], e.g., the spatial information contained in the demixing lters
wpq could be used for this decision [11]. In the following it is as-
sumed that the channel y1 contains the monaural representation of
the desired source s1 and all other output channels y2, . . . , yP con-
tain estimates of the interfering sources.

To obtain a spatially correct representation of the desired source
and – in contrast to the method in Sect. 2.2.1 – also of the suppressed
interfering sources, we propose to apply a set of adaptive lters. As
shown in Fig. 3 these supervised adaptive lters use the estimates
of the interfering sources yq , q = 2, . . . , P as a reference signal to
perform interference cancellation. If the desired source s1 is silent
then the adaptation of the lter bq,xp (q = 2, . . . , P , p = 1, . . . , P )
will yield the contribution of the q-th interferer to the p-th sensor
signal at the output of bq,xp . Interference cancellation is achieved
by subtracting the outputs of the adaptive lters from the delayed
sensor signals xp. If the desired signal s1 is active then the adapta-
tion of bq,xp has to be stopped. Thus, to obtain reliable estimates
of the interferers an adaptation control is needed which adapts the
lters bq,xp only in the case when the desired source is inactive. A

reliable decision on desired source activity can be made if the adap-
tation control is implemented for each DFT bin independently. A
sophisticated DFT-based method was presented in [15] and is used
in our experiments.

Ideally, the interferers contained in the sensor signals are com-
pletely cancelled and thus, the resulting signals y1,x1

, . . . , y1,xP

contain the spatially correct desired source. In practice, the inter-
fering sources can only be suppressed to a certain degree so that
there is usually some residual of the interfering signals. Thus,
y1,x1

, . . . , y1,xP
contain the desired source and the remaining sup-

pressed interference as picked up by the multiple sensors xp and
therefore preserve the spatial information of the whole acoustic en-
vironment allowing further binaural processing by the human audi-
tory system. To estimate the adaptive lters bq,xp , a DFT-domain
algorithm based on the following optimization criterion

Jbq,xp
(n) = (1− λ)

n∑
i=0

λ
n−i

R−1∑
ν=0

|y(ν)
q,xp

(i)|2 (11)

can be used. The frequency-domain representation y
(ν)
q,xp of yq,xp for

the ν-th bin of a length-R DFT is obtained from a signal block of the
variables xp, yq , and the lters bq,xp , respectively. The forgetting
factor λ is chosen to 0 < λ < 1. In our experiments we use an
algorithm derived in [16] incorporating robust statistics [17] in the
optimization criterion (11). This makes the estimation more robust
against outliers.

2.3.2. Constrained Optimization Method based on the MDP

In [14] the minimal distortion principle (MDP) was proposed which
constrains the demixing lters wpq of the BSS algorithm to avoid
distortion of the separated signals. The MDP is equivalent to con-
straining the output signals to yq

!
= yq,xq . If a BSS algorithm

together with the MDP is applied, then the structure of the post-
processing algorithm (Fig. 3) can be simpli ed. We again assume
that the desired source is obtained in y1. Due to the MDP this chan-
nel already represents the contribution of the desired source at x1,
i.e., y1,x1

(see Fig. 4). Thus, the lter b2,x1
may be omitted. Ad-
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y2
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= y2,x2

y1
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= y1,x1

y1,x1
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Fig. 4. Constrained optimization method based on the MDP.

ditionally, the estimate of the interfering soure at output y2 corre-
sponds to y2,x2

. Hence, the contribution of the desired source at the
sensor x2 can easily be obtained by subtracting the interfering source
y2 from the second sensor x2 without the need of the adaptive lter
b2,x2

(Fig. 4). The delay δ(n − l) accounts for a possible delay
introduced by the BSS lters wpq . A cost function which achieves
separation under the MDP constraint is given as

JMDP(n) = JMCBD(n) + γ Ê
{
‖x(n− l)− y(n)‖2

}
, (12)

where x(n) = [x1(n), . . . , xP (n)]T , y(n) = [y1(n), . . . , yP (n)]T

and ‖ · ‖ denotes the 2-norm.
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3. EXPERIMENTS
The algorithms were tested in a living room environment with a re-
verberation time of T60 = 320ms. P = 2 was chosen and speech
signals were used as desired source s1 and interfering source s2. As
the proposed technique is very attractive for hearing aids, the two
microphones were placed at the left and right human ear. In such
applications it is often assumed that the desired source comes ap-
proximately from the front, i.e., θ1 ≈ 0◦. Thus, two scenarios were
tested: a) θ1 = 0◦, θ2 = 60◦ and b) θ1 = −30◦, θ2 = 60◦. The
experimental results of the two proposed and the two state-of-the-art
algorithms have been evaluated using a listening test called MUlti
Stimulus test with Hidden Reference and Anchor (MUSHRA) ac-
cording to [10]. The test was performed with ten experienced listen-
ers and the presented stereo test signals were of length 10 s. To eval-
uate only the spatial impression, the stereo hidden reference signal
was chosen as the two microphone signals. Thereby the segmental
signal-to-interference ratio (SIRseg) was adjusted to the same sup-
pression of the interfering source as achieved at the monaural output
of the BSS algorithm where an improvement of ΔSIRseg = 12 dB
was achieved. Thus, for the hidden reference a separated desired
signal is generated with perfect spatial impression of both, desired
source and residual of the interfering source. The anchor signal is
the monaural BSS output of the desired source. The listeners were
instructed to rate the test signals with respect to the reference signal.
Thus, in general the results are in uenced by the spatial impression
and the separation performance. However, all algorithms achieved
comparableΔSIRseg without any signal distortions such as musical
noise and differed mainly by the ability to preserve spatial informa-
tion. The experimental results include the initial convergence phase

A B C D E F A B C D E F

Excellent

Good

Fair

Poor

Bad

Fig. 5. Results of the MUSHRA test for scenario (a) (left plot) and
scenario (b) (right plot).

of the algorithms and are shown in Fig. 5 with the indices of the
algorithms being given by
(A) Hidden reference
(B) Monaural BSS output
(C) Post ltering by the demixing system (Sect. 2.2.1)
(D) Constrained optimization using (6) (Sect. 2.2.2)
(E) Proposed method based on MDP (Sect. 2.3.2)
(F) Proposed method based on adaptive ltering (Sect. 2.3.1)
The BSS algorithm used in (B), (C), and (F) is explained in detail in
[13] and β, γ in (D), (E) are chosen to β = 1, γ = 0.1. In Fig. 5 the
average grades and the standard deviations are depicted.

For scenario (a) the monaural BSS output and the algorithms
(C)-(E) are rated very similar. The reason is that the desired source
is at 0◦ which corresponds to the perceived position in a monaural
representation. As mentioned before (Sect. 2.2.1), for (C) all sources
contained in y1 will be projected to the same position so that there is
no difference to the monaural representation. Methods (D) and (E)
do not succeed completely in preserving the spatial information of
the suppressed interfering source. The residual interferer sounds dif-
fuse. This is in contrast to (F) which succeeds in preserving spatial

information of both, desired and interfering source. We attribute this
to the ef cient decoupling of the optimization criteria.

In scenario (b) the desired source position deviates from 0◦ so
that already the approach (C) improves the spatial impression even
if the residual interferer is perceived to be also located at −30◦.
Method (D) obtains an average rating as the interferer sounds again
diffuse and due to the complicated cost function (6) the convergence
of the algorithm is slow. The proposed approach (E) shows improved
performance, even if the interfering source is not clearly localizable
due to its diffuse character. Again (F) shows excellent performance
as all sources can be well localized. Also note that in both scenarios
the listeners were always able to detect the hidden reference.

4. CONCLUSIONS
Two novel methods for maintaining the spatial information in source
separation algorithms have been presented. The experimental eval-
uation by a MUSHRA listening test showed the improved perfor-
mance compared to state-of-the-art algorithms.
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