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ABSTRACT

This paper describes state-of-the-art interfaces between speech
recognition and machine translation. We modify two different ma-
chine translation systems to effectively process dense speech recog-
nition lattices. In addition, we describe how to fully integrate speech
translation with machine translation based on weighted finite-state
transducers. With a thorough set of experiments, we show that both
the acoustic model scores and the source language model positively
and significantly affect the translation quality. We have found consis-
tent improvements on three different corpora compared with transla-
tions of single best recognition results.

1. INTRODUCTION

Over the last decade it has been demonstrated by many publications
and research projects that automatic speech recognition (ASR) and
machine translation (MT) can be coupled in order to directly trans-
late spoken utterances into another language. Whereas the most sim-
ple speech translation systems translate single best recognizer out-
put, a few attempt to benefit from considering multiple recognition
hypotheses for an utterance. Such attempts can be classified by the
type of input that the systems use. A simple extension to translating
only the single best ASR output is translations of the N -best ASR
hypotheses. Recently, moderate improvements with this approach
were reported by e. g. [3] and [4]. A more tighter coupling of ASR
and MT is reached when word lattices are translated; the lattices can
also be converted to confusion networks. In the past, some improve-
ment of translation quality was achieved by using lattices with small
densities [12]. Finally, a fully integrated approach where the whole
search space of ASR and MT is integrated can be pursued. In the
past, this approach was successful only on very small tasks [13].

When coupling speech recognition and machine translation, the
recognition model scores and the translation model scores can be
combined to improve translation performance. A theoretical basis
for the score combination was given in [9]. One can differentiate
between joint probability speech translation systems and conditional
probability systems. In both types of systems, the ASR acoustic and
language model scores can be combined with the translation fea-
tures. The recognition features can either be included directly in the
search, or in a post-processing step by rescoring word lattices or N -
best lists.

This paper is organized as follows. Based on the presentation of
[9], Section 2 reviews the Bayes’ decision rule for speech translation.
Starting from there, in Section 3 we show how ASR word lattices
can be translated and review the basics of our two speech translation
systems: the joint-probability system and the phrase-based system

that employs log-linear modeling. Section 4 explains the function-
ality of the fully integrated speech translation system. In Section 5
we present significant improvements in quality of translation when
we utilize recognition features in translation and optimize the model
scaling factors.

2. BAYES’ DECISION RULE FOR SPEECH TRANSLATION

In speech translation, we try to find the target language sentence eI
1

which is the translation of a speech utterance represented by acous-
tic vectors xT

1 . In order to minimize the number of sentence errors,
we maximize the posterior probability of the target language trans-
lation given the speech signal (see [9]). The source words fJ

1 are
introduced as a hidden variable:
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Note that we made the natural assumption that the speech signal
does not depend on the target sentence and approximated the sum
over all possible source language transcriptions by the maximum.
Pr(xT

1 |fJ
1 ) may be a standard acoustic model, and Pr(eI

1) is the
target language model.

As already stated in [9], the conditional probability term
Pr(fJ

1 |eI
1) and P (eI

1) can be rewritten when using a joint proba-
bility translation model:
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This simplifies coupling the systems since the joint probability trans-
lation model can be used instead of the usual language model in
speech recognition (see Section 4).

It should be noted that in comparison to integrated speech trans-
lation which uses the decision rule from above, speech translation
based on word lattices uses the additional approximations that word
boundary times are fixed and that many word sequences may never
be contained in the word lattice due to the word-pair or word-triple
approximation.
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3. SPEECH TRANSLATION SYSTEMS AT RWTH

3.1. WFST-Based Joint Probability System

The joint probability MT system (referred to as FSA, for a more de-
tailed description see also [6]) is implemented with weighted finite-
state transducers (WFSTs). First, the training corpus is transformed
as shown in Figure 1, based on a word alignment. Then a statisti-
cal m-gram model is trained on the bilingual corpus. This language
model is represented as a finite-state transducer Tr which is the final
translation model. Searching for the best target sentence is done in
the composition of the input represented as a WFST and the transla-
tion transducer Tr.

Coupling the FSA system with ASR is fairly simple since the
output of the recognizer represented as WFST can be used directly
as input to the machine translation search. For the FSA-based speech
translation system the only features used are the acoustic probabil-
ity from the input word lattice and the translation model probability.
The source language model scores are not included, since the joint
m-gram translation probability contains dependencies on the prede-
cessor source words and thus serves as a source language model.

vorrei|i’d like del|some gelato|ice cream
per|ε favore|please

Fig. 1. Example of a transformed sentence pair.

3.2. Phrase-Based System

The phrase-based translation system (referred to as PBT) follows a
direct modeling approach. Probability distributions are represented
as features in a log-linear model. In particular, the translation model
probability Pr(fJ

1 |eI
1) is decomposed into several probabilities. The

main feature is the phrasal translation lexicon. It is supplemented by
single word based lexicon probabilities. Lexica from both transla-
tion directions are used. In addition, we include the target language
model, as well as the word and phrase penalty features to avoid too
short/long translations.

Each feature is scaled by a separate exponent. The scaling fac-
tors are optimized in a minimum error training framework [10] with
the Downhill Simplex algorithm iteratively, by performing 100 to
200 translations of a development set. The criterion for optimization
is an objective machine translation error measure like word error rate
or BLEU score.

For speech translation we additionally include the acoustic
model probabilities Pr(xT

1 |fJ
1 ) of the hypotheses in the ASR word

lattices and probabilities of the source language model as features.
Details are given in [7]. When searching for the best translation, the
system has to optimize over alternative recognition word sequences
fJ
1 (as given by the input word lattice), over all possible monotone

segmentations of a given recognized sequence into source language
phrases, and over all possible translations of these phrases.

The utilization of multiple features and the direct optimization
for an objective error measure is the main advantage of this system in
comparison to the FSA system. However, it is paid by a less efficient
search, which makes heavy pruning unavoidable.

3.3. Reordering

Appropriate reordering of words/phrases in translation is very im-
portant for good performance of MT systems, since there are signif-
icant differences in typical word order between most languages (see

also [6]). In case of ASR word lattice input, the reordering in search
is a complex problem. Here, we present two basic solutions.

In the FSA system, the search is monotone. However, we re-
order words in each sentence in the target training corpus based on
the initial word alignment such that the resulting alignment becomes
monotone. Obviously, resulting translations will have the word order
of the source sentence. To fix the wrong word order, we use a similar
idea to that described in [2]. Given the best translation hypothesis we
first permute its words and then compose the resulting permutation
automaton with an n-gram target language model in order to select
the word order with the highest probability. The computational com-
plexity can be reduced by using constraint permutation automata.

In a recent modification of the PBT system, limited word re-
ordering is possible. While traversing the input lattice, a matched
source phrase can be skipped and processed later. This type of re-
ordering helped to improve translation quality, see Section 5.

4. FULL INTEGRATION OF ASR AND MT

As the PBT system is more complicated to integrate with speech
recognition search, we only use the FSA system for the fully inte-
grated speech translation. We start by representing the static ASR
search network as a composition of multiple WFSTs (see also [8]),
namely H for the HMM topology, C for the context-dependency
(CART), L for the lexicon, and G for the language model. As the
transducer cascade H ◦ C ◦ L already represents the conditional
probability term Pr(sT

1 |fJ
1 ) for a given HMM state sequence sT

1 ,
we only need to replace the source language model G by the transla-
tion model Tr to get the final optimized (det = determinized) speech
translation search network ST :

ST = det(H ◦ det(C−1)−1 ◦ det(L ◦ Tr))

The problems faced in the optimized composition are:

• Tr is ambiguous on the input side. This can be solved by
adding disambiguation symbols to the input side of Tr as de-
scribed in [8] for the lexicon.

• unknown words, i.e. source words contained in the lexicon,
but not in the input language of Tr, must be passed to the out-
put language of the translation model Tr. This is performed
by preprocessing Tr appropriately.

5. EXPERIMENTS

5.1. Corpus Statistics

The speech translation experiments were carried out on three dif-
ferent tasks. Experiments for all tasks were based on bilingual
sentence-aligned training corpora. Corpus statistics for these tasks
are given in Table 1.

The Italian-English Basic Travel Expression Corpus (BTEC)
task contains tourism-related sentences usually found in phrase
books for tourists going abroad. We were kindly provided with this
corpus by ITC-IRST. Speech translation experiments were also per-
formed on a smaller Chinese-English BTEC corpus [1] in the frame-
work of the IWSLT 2005 evaluation campaign [14]. 16 reference
translations of the correct transcriptions for the BTEC test corpora
were available.

The Italian-English Eutrans II FUB task contains sentences from
the domain of hotel help-desk requests. It is significantly smaller
than the BTEC task and has evolved from one of the first European-
funded speech translation projects. Only a single reference transla-
tion is available for the test corpus on this task.
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Table 1. Corpus statistics of the speech translation tasks BTEC and Eutrans II.
BTEC Eutrans II FUB

Italian English Chinese English Italian English
Train Sentences 66 107 20 000 3 257

Running Words 410 275 427 402 176 199 189 927 47 681 57 663
Vocabulary 15 983 10 971 8 687 6 870 2 453 1 695
Singletons 6 386 3 974 4 006 2 888 975 519

Test Sentences 253 506 300
Running Words 1 459 1 510 3 918 3 909 5 305 6 419

Out-Of-Vocabulary rate [%] 2.5 0.9 2.3 1.8 2.3 1.3
ASR WER [%] 21.4 - 42.0 - 23.7 -

5.2. Evaluation Criteria

For the automatic evaluation, we used word error rate (WER),
position-independent word error rate (PER), and the BLEU score
[11]. The BLEU score measures accuracy, i. e. larger scores are bet-
ter. On all tasks, training and evaluation were performed using the
corpus and references in lowercase and without punctuation marks.

5.3. Translation of Word Lattices

We compare the performance of the transducer-based joint proba-
bility system and of the phrase-based system on the BTEC Italian-
English task. We consider three translation conditions: translating
single best recognition output, translating ASR word lattices without
the acoustic model scores, and including the acoustic model scores
in the ASR word lattice in the global decision process.

For the FSA system, a 4-gram translation model was estimated
on the bilingual representation of the training corpus for this task. A
4-gram target language model was used in search for the PBT system
as well as to score permutations of the final hypotheses from the FSA
system. In order to include the source language model feature in the
PBT system, we extended each word lattice by the scores of a trigram
language model.

The objective error measures for the two systems on the BTEC
Italian-English task are summarized in Table 2. We observe that
exploring the word lattice topology in translation already results in
some improvement in the translation quality. However, the improve-
ments are more significant when we combine recognition model fea-
tures with the translation model features. In the case of the FSA sys-
tem, as mentioned in Section 3, we interpolate the acoustic model
score and the translation model score. It is important to optimize
the scaling factor for the translation model score. On this task, the
scaling factor is 45 and is higher than the usual LM scaling factor in
speech recognition.

When using the PBT system, we include both the acoustic model
and the source language model score. The language model score is
used to model the context dependency for the source language which
had been captured only within the source phrases of the phrasal lex-
icon. The scaling factors for the recognition features only or for
translation and recognition features simultaneously were optimized
in the log-linear model on a development set for the word error rate.
Table 2 shows the improvements in translation quality on the test set
when using optimized scaling factors.

Table 2 also shows that the PBT system not only performs bet-
ter in terms of absolute error measures, but also is able to achieve a
larger relative improvement (8% vs. 5.4% in WER) with the inte-
grated approach of word lattice translation based on log-linear mod-
eling.

Table 2. Translation results [%] on the BTEC Italian-English task.
Comparison of the log-linear model approach (PBT) with the WFST-
based joint probability approach (FSA).

System: Input: WER PER BLEU
PBT single best 32.4 27.2 55.4

word lattice 31.9 28.0 54.7
ac. + LM scores 30.6 26.6 56.2
opt all factors 29.8 25.8 57.7

FSA single best 33.4 29.1 52.7
lattice + ac. scores 31.6 27.6 54.3

5.4. Importance of Word Reordering

As mentioned in Section 3.3, both of the described speech transla-
tion systems can be improved by allowing limited reordering. In the
case of the FSA system, target sentences were reordered in training,
but the lattice was processed monotonically. After translation, the
resulting single best hypotheses were permuted under the IBM re-
ordering constraints with a window size of 3 and scored with a target
language model. This has further reduced the number of translation
errors on the BTEC Italian-English task, as shown in Table 3.

Postponing the translation of a matched phrase and thus allow-
ing limited reordering in the search also helps to improve the perfor-
mance of the PBT system. However, this improvement is significant
only when translating from a language with the word order largely
different from English, e. g. Chinese. Local reorderings which are
typical for the Italian-English translations are already captured in the
bilingual phrasal lexicon of the system. Table 4 presents the transla-
tion results on the Chinese-English BTEC task. Performing the lim-
ited reordering clearly results in better translation quality for both
ASR single best output and word lattice translation.

Table 3. Effect of target reordering in training and after translation
for word lattice translation on the BTEC Italian-English task (FSA
system, results in [%]).

Reordering: WER PER BLEU
none 31.6 27.6 54.3
target 30.6 26.0 55.4

Table 4. Effect of phrase reordering in search on the BTEC Chinese-
English task (PBT system, results in [%]).

Reordering: Translation of: WER PER BLEU
none single best 62.1 52.7 31.1

lattice 58.3 48.1 34.1
skip single best 61.3 51.7 33.1

lattice 57.7 47.2 35.1
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Table 5. Translation results [%] on the Eutrans II FUB Italian-
English task. The last line contains results when directly coupling
the speech recognition and machine translation systems by using a
single optimized finite-state network.

Input: WER PER BLEU
correct text 29.1 22.1 58.8
single best 37.4 29.1 51.3
word lattice 38.2 29.5 50.2
+ ac. scores 36.6 28.1 52.4
integrated 36.3 28.0 52.6

Table 6. Comparison of speech recognition and speech translation
search characteristics for the Eutrans II FUB Italian-English task
(AMD Athlon64 2.0GHz; RTF: real-time factor).

system # active states RTF
ASR 1 872 0.35
ST 14 379 1.26

5.5. Fully Integrated Speech Translation

The experiments for fully integrated speech translation were per-
formed on the Eutrans II FUB corpus. For better comparison we
generated lattices with different densities. The lattice error rate, i.e.
the minimum WER among all paths through the lattice, was 9.1% on
average for the largest lattice density of 2098. We optimized the sys-
tem with respect to both the lattice density and the translation model
scaling factor λ simultaneously. In contrast to the results presented
in [12], the WER consistently drops with larger lattices and shows a
clear minimum for λ = 90 (for comparison: the optimal language
model scaling factor for the ASR system is 16). Results of all error
measures for the optimal settings are given in Table 5. The target
word reordering in training and after translation was performed as
described in Section 3.3. Different from [6], we consistently use a
trigram language model to generate lattices and a trigram translation
model here. The last line of the table shows that the fully integrated
system performs better than the system using large lattices which
is another proof that the error rate does not rise with larger lattice
densities. Note that although the speech recognition system has a
slightly worse WER on this task compared to [5], we obtain a much
better speech translation WER.

Table 6 compares the search space of the network described in
Section 4, using either the usual language model G, or the transla-
tion model Tr. In both cases, pruning thresholds were adjusted to be
minimal and to not produce search errors. Both static pre-compiled
search networks were about the same size with the speech trans-
lation network being slightly bigger. Speech translation had about
7.7 times more active state hypotheses and was slower than speech
recognition by a factor of 3.6. This can partly be contributed to the
high ambiguity of the translation model as the same input sentence
may have many different translations. On the Eutrans II FUB task,
we observed an average of 2.9 target phrases per source word in the
bi-language.

6. CONCLUSIONS

In this paper, we gave a short overview of the current research on
coupling speech recognition and machine translation. We presented
two state-of-the-art speech translation systems which consistently
perform better when translating ASR word lattices with acoustic
and/or language model scores, or even in a fully integrated speech
translation architecture. These improvements are significant and
were achieved on several tasks. However, on (large vocabulary) tasks

with good ASR performance, the MT performance is yet to be gen-
erally improved to avoid translating word sequences which contain
recognition errors. Also, the key to success of speech translation is
a closer cooperation of the ASR and MT researchers who have to
agree on common standards for e. g. the lattice structure, definition
of vocabulary, segmentation, and other practical interface issues.
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