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ABSTRACT

In this paper, we present a new approach to automatically 

determine a detector threshold.  This research problem is 

especially important in hyperspectral target detection as targets are 

typically very similar to the background.  While a number of 

methods exist to determine the threshold, these methods require 

either large amounts of data or make simplifying assumptions 

about the background distribution.  We use a method called 

inverse blind importance sampling which requires few samples and 

makes no a-priori assumptions about the background statistics.  

Results show the promise of this algorithm to determine thresholds 

for fixed false alarm densities in hyperspectral detectors.   

1. INTRODUCTION 

In hyperspectral (HSI) detection, a threshold has to be determined 

to separate the targets from the background for a specified 

probability of false alarm 0.  A number of methods have been 

developed to identify this threshold.   

For a class of detectors called Constant False Alarm Rate 

(CFAR) detectors, the threshold can be calculated theoretically 

from the closed-form solution of their detection statistic.  The 

problem with this method is that the detectors are usually based on 

an assumed underlying probability distribution (e.g. the normal 

distribution).  Unfortunately, HSI data is known to be rarely 

normally distributed [1] and researchers have shown that 

theoretically derived detection statistics do not match real-world 

HSI data [2].   

This realization has led to the use of elliptically-contoured 

distributions to model the output detection statistic.  The detector 

data is used to estimate parameters which in turn provide a 

distribution from which a detection threshold can be theoretically 

calculated.  The usefulness of this method is still being 

investigated, but its applications have been limited to CFAR 

detectors developed using the normality assumption [3]. 

A standard non-parametric way of determining the desired 

detector threshold is to use a rank-ordered test.  The detector 

output is sorted in descending order to create an ordered list.  The 

length of the output N is then multiplied by the desired 0 and 

rounded to the nearest integer.  This integer is used to identify the 

position in the ordered list that will be used as the detection 

threshold.  The strength of this approach is that any detector output 

can be used – not just those that are CFAR.  Unfortunately, this 

solution requires that the product N 0 be greater than one.  If not, 

the index will be zero and no threshold can be selected.  This can 

be problematic when extremely low false alarm rates are required.   

This paper introduces a new method of determining the 

detector threshold based on importance sampling (IS).  Importance 

sampling is a forced Monte Carlo method that is used to simulate 

rare events [4].  A branch of IS research called inverse importance 

sampling (IIS) was developed that can calculate a detection 

threshold given a 0 and probability distribution.  In 1998, 

Bucklew published an algorithm called blind importance sampling 

(BIS) that removed the need to know a-priori knowledge of the 

underlying distribution [5].  This allows BIS algorithms to measure 

the performance of very complex systems and provide thresholds 

for a fixed 0 even when the underlying distribution changes.     

For this paper, we apply the inverse blind importance 

sampling (IBIS) technique to the problem of detection threshold 

selection for HSI detectors.  Section 2 presents an overview of 

IBIS techniques.  Section 3 demonstrates the IBIS algorithm’s 

abilities in a series of experiments.  Section 4 summarizes our 

results and presents future research directions. 

2. ALGORITHM DERIVATION 

Blind importance sampling uses experimental data to estimate rare 

events.  In the context of detectors, this can be used to estimate a 

desired tail distribution or in the inverse method, a threshold 

designed to provide a fixed 0. The following sub-sections detail 

the derivation of this technique following that found in [4].   

2.1. Importance Sampling 

Consider there exists a set of K data points Xi taken from some 

known distribution f.  At some threshold t, the number of samples 

greater than this threshold can be modeled by a Binomial 

distribution
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where 1(x) is an indicator function.  This function can also be seen 

as the estimated tail probability or probability of rare event if t is 

sufficiently large.  For a Monte Carlo simulation, this requires a 

very long simulation to collect enough samples to properly 

estimate pt.

IS reduces the length of the Monte Carlo simulation by 

biasing the estimate with a weighting function W(x) (also called an 

importance function) such that
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where f* is a biasing density and  
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Most of IS is concerned with the proper design of W(x) such that 

the estimate of pt can be done with fewer points and improved 

precision.

2.1. Blind Importance Sampling 

For BIS, a few changes are necessary as we do not know the 

underlying distribution f(x).  Now we assume there exists a set of K

experimental data samples Xi taken from some unknown 

distribution f.  Using an acceptance-rejection method proposed by 

Bucklew [5], we create a new set of samples Yi such that
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where Ui are random samples drawn from a uniform distribution 

and h(X) is a function bounded between 0 and 1.  Using this 

construct the Yj are distributed according to 
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where ah is the new probability of success such that 
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Combining (3), (7), and (8), we obtain the blind tail probability 

estimate 
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In partially blind importance sampling, the probability of 

success ah is known a-priori.  In our blind case, we must estimate 

this value.  Knowing that 
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we can estimate the mean of h(X) such that 
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Note that equations (9) through (11) depend on the selection 

of a proper h(X) called the h-function.  An h-function suggested by 

Srinivasan [4] is  

 (12) )(1)(1)( )( cxcxexh cxs

where c is a constant called the truncation parameter that 

guarantees h(x)  1.  Additionally, the truncation parameter should 

be greater than the detection threshold t to minimize the variance 

of the estimated pt.  While Srinivasan has an approach to find a 

good choice for c, it depends on knowing the detection threshold t.

Clearly for a problem where we are interested in obtaining the t

from the data, this remains an active area for research.    

The other parameter s in the h-function does have an 

automated way to find the optimal value which minimizes the 

variance of our tail estimate.  From [4], the variance of the tail 

estimate is bounded above by the estimate 
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Note that (13) can be estimated entirely from the original data 

samples Xi.  To find the optimal s, an iterative approach using a 

gradient descent method can be used such that
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where m is the iteration,  is a value controlling the rate of descent, 

is the first derivative of the variance with respect to s, and is

the second derivative of the variance with respect to s.  The 

calculation of these derivatives is fairly straight-forward but rather 

involved and is left out of this paper for space considerations.
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2.2. Inverse Blind Importance Sampling 

The earlier constructs provided a way to calculate the estimated 

tail probabilities given a threshold.  We are interested in finding a 

threshold for a given probability.  This is called inverse blind 

importance sampling.  An iterative approach using another 

gradient descent method is used to identify the appropriate 

threshold t that minimizes the error between the desired tail 

probability and estimated tail probability.  The iterative equation is 
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where m is the iteration,  is a value controlling the rate of descent, 

0 is the desired tail probability, t
ˆ  is the current estimated tail 

probability, and t
ˆ  is derivative of the current estimated tail 

probability with respect to t.

To solve (15), we need to take the derivative of (9) with 

respect to t.  The identity function makes this difficult; so, we 

replace the identity function with 

V  1202



10-1 10-2 10-3 10-4 10-5 10-6
1

2

3

4

5

6

t

0

True Threshold
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where  = Xi – t, and a is a parameter used to control how close the 

function approximates a true identify function.  The larger the 

value of a, the better the approximation is to the identity function.   

3. EXPERIMENTAL RESULTS 

To test the ability of the IBIS algorithm to estimate a detection 

threshold, we constructed three experiments.  The first experiment 

shows the ability of our BIS algorithm to accurately estimate a 

detection threshold – even when using very few samples.  The 

second experiment demonstrates the algorithm’s ability to 

automatically adjust a detection threshold to maintain a specified 

probability of false alarm across changing background 

distributions.  The final experiment applies the algorithm to real-

world hyperspectral data which has been processed using a 

standard anomaly detection algorithm.   

3.1. Experiment 1 

This experiment demonstrates the ability of IBIS algorithm to 

accurately estimate a detection threshold for a specified probability 

of false alarm 0.  We chose six 0 that ranged from 10-1 to 10-6.

For each 0, we processed 100 tests comprised of a thousand iid 

samples drawn from a standard normal distribution.  Since we used 

a standard normal distribution, we could calculate the ideal 

threshold for the specified 0.  This ideal threshold was then 

compared to the IBIS results obtained using a statistical boxplot.  

The results are shown in Figure 1.  Note that we are requiring the 

algorithm to estimate some 0 values that are below the number of 

samples provided. 

The IBIS algorithm performs well without any a-priori 

distribution information.  The boxplot shows that the thresholds 

obtained match the ideal threshold with some degree of accuracy.  

With larger 0, the algorithm tends to over-estimate the values 

while with smaller 0, the algorithm tends to under-estimate the
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Fig. 2. IBIS Threshold Estimates for Experiment 2 

threshold values.  Also, the variance of the detection threshold 

estimates grows with decreasing 0.

All of these effects are expected.  Without any information of 

the underlying distribution, the algorithm does track the thresholds 

to within one standard deviation of the ideal threshold.  The 

variances increase with decreasing 0 because less and less 

samples are available to determine the threshold.  What is 

incredible is the ability of the algorithm to estimate fairly 

accurately detection thresholds for 0 below 10-3 when only one 

thousand samples were used for each iteration.   

3.1. Experiment 2 

To showcase the IBIS algorithm’s ability to adjust the detection 

threshold automatically to maintain a specified 0, this experiment 

changes the underlying statistical distribution without informing 

the algorithm of the change.  Initially, one thousands iid samples 

are drawn from a standard normal distribution.  This experiment is 

repeated fifty times and then the distribution is changed to a 

Rayleigh distribution and fifty more iterations are used.  

Throughout this test, the IBIS algorithm is asked to maintain a 0

of 10-3.

The results of this experiment are shown in Figures 2 and 3.  

In Figure 2, the IBIS threshold estimates are compared to the 

known threshold.  In Figure 3, the IBIS estimated false alarm rates 

are compared to the desired false alarm rate of 10-3.

As can be seen in these figures, the IBIS algorithm performs 

well.  It tracks the true detection threshold even when the 

underlying distribution is changed.  This is expected since the 

algorithm does not use any a-priori distribution information to 

estimate a threshold.  If it did, the algorithm would fail when the 

distribution changes.  It maintains a 0 that is close to 10-3

considering that it is doing this given only 1000 samples per test.   

When comparing the IBIS algorithm to the non-parametric 

ordered-rank test, the IBIS algorithm provides a 3-fold increase in 

precision over the rank-ordered test.  The variance of the estimate
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Fig. 3. Estimated  for each iteration in Experiment 2 

obtained using the rank-ordered algorithm is 1.06•10-6.  The IBIS 

algorithm variance is 3.61•10-7.

3.2. Experiment 3 

The final experiment applies the IBIS algorithm to an anomaly 

detector operating on real-world HSI data.  The HSI data is from 

the HYDICE sensor (a VIS/NIR/SWIR sensor with 210 spectral 

bands).  The image contains trucks and tarps in open fields and 

near tree-lines.  These targets are identified using the RX 

algorithm – a standard anomaly detection algorithm for HSI data 

[6].  The RX output is then the input to our threshold estimation 

algorithms.

We used three methods to determine the 0 of 10-3 from our 

data.  The first method was a theoretical calculation based on the 

fact that RX output is a chi-squared distribution with L degrees of 

freedom.  The second method was the rank-ordered method 

described in the introduction.  The third method was the IBIS 

algorithm.  All of these methods were compared in Table 1 to the 

ideal threshold determined empirically from the data.   

Table 1: Comparison of Experiment 3 Results 

Estimator Threshold Pd

Theoretical 279.07 0.15 0.00039

Rank-ordered 269.92 0.16 0.00042

IBIS 176.65 0.23 0.00103

Ideal 180.59 0.22 0.00100

The results show that the IBIS algorithm achieves the closest 

performance to the ideal false alarm rate of 10-3.  The other two 

methods are considerably lower.  The theoretical calculation based 

on the chi-squared test most likely under estimates due to the fact 

that the detector output is not truly chi-squared.  The rank-ordered 

method most likely underestimates because it includes the target 

estimates in its calculations.  The IBIS algorithm using the 

specified h-function with limit c is able to suppress the influence 

However, the constant c was derived empirically from the data 

since no automated method currently exists to find this quantity.  

Nevertheless, this experiment demonstrates the promise of the 

IBIS algorithm to automatically determine a threshold given a 

specified false alarm rate.   

of the target samples and hence provide a better estimate.  

4. CONCLUSIONS 

 new adaptive threshold method has been demonstrated for use in 

ing of our research.  The key 
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