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Abstract— In this paper, we introduce a class of training-efficient adap-
tive signal detectors that exploit a parametric model taking into account
the non-stationarity of HSI data in the spectral dimension. A maximum
likelihood (ML) estimator is presented for estimation of the parameters
associated with the proposed parametric model. Several important issues
are discussed, including model order selection, training screening, and
time-series based whitening and detection, which are intrinsic parts of
the proposed parametric adaptive detectors. Experimental results using
real HSI data reveal that the proposed parametric detectors are more
training-efficient and outperform conventional covariance-matrix based
detectors when the training size is limited.

I. INTRODUCTION

Hyperspectral imaging (HSI) has numerous civilian and military
applications [1]. A challenging problem in HSI applications is the
so-called subpixel target detection, which involves detecting objects
occupying only a portion of a full pixel [2]. The signal produced by
the HSI sensors consists of both the object and background, the latter
behaving effectively as interference. The problem is reminiscent of
that of detecting a known signal with unknown amplitude in colored
noise with unknown correlation. A multitude of solutions have been
developed, including the Kelly’s generalized likelihood ratio test
(GLRT), adaptive matched filter (AMF), adaptive coherence estimator
(ACE), among others (see [2] and references therein). While these
detectors can be applied to the HSI subpixel target detection problem,
there is a major difficulty when training is limited. In particular,
the above covariance-matrix based detectors rely on an estimate of
the background covariance matrix, which is obtained from target-
free training pixels. The size of the background covariance matrix is
identical to the number of spectral bands that is typically in the order
of hundreds. A good estimate of the covariance matrix would require
several hundred or more target-free training pixels, which may not
be available in heterogeneous or dense-target environments.

In this paper, we present a class of parametric adaptive detectors,
which utilize a parametric model for the background of the HSI
data to achieve training efficiency. Our approach builds on earlier
parametric detectors, in particular, the parametric adaptive matched
filter (PAMF) [3], [4] developed for space-time adaptive processing
(STAP) in airborne radars. The major difference is that whereas the
PAMF detector is based on stationary autoregressive (AR) models
that are appropriate for radar applications, we have to deal with non-
stationarity of HSI data in the spectral dimension, and employ a non-
stationary (NS) AR model for our problem. Along with the proposed
NS-AR model based detectors, we address several important issues
including parameter estimation, model order selection, and training
screening.

II. DATA MODEL AND PROBLEM STATEMENT

Each pixel in an HSI data cube [2] can be represented as an L×1
real-valued vector: x = [x(0), x(1), . . . , x(L−1)]T , where L is the
total number of spectral bands, x(l) is the spectral response at the
lth spectral band, and (·)T denotes transpose. HSI data usually has
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non-zero mean [2]. A de-meaning process is often used to remove
the sample mean estimated from the neighbor pixels. The subpixel
signal detection problem is described by [2]

H0 : x = b, target absent

H1 : x = as + b, target present
(1)

where x ∈ R
L×1 is the de-meaned test pixel, s ∈ R

L×1 is the
signature vector of the target object, which is assumed known, with
unknown amplitude a, and b ∈ R

L×1 denotes the background plus
system noise, which is modeled as a Gaussian1 random vector with
zero mean and an unknown covariance matrix Rb [2]. Like [2],
we assume the availability of N training pixels x1, . . . , xN , which
are independent and identically distributed (i.i.d.) Gaussian random
vectors with zero mean and covariance matrix Rb, and independent
of the text pixel x. In surveillance applications when the target class
is rare or sparsely populated, the training pixels are usually taken as
those surrounding the test pixel and assumed target-free [2].

The problem is to find an efficient decision rule for the composite
hypothesis testing problem (1), given knowledge of the test pixel x,
target signal signature s, and training pixels x1, . . . , xN .

III. PROPOSED APPROACH

We present herein a class of parametric adaptive signal detectors
with reduced training requirement. The proposed detectors, detailed
in Section III-B, rely on an NS-AR model introduced in Section III-
A, an ML parameter estimation algorithm derived in Section III-C,
a model order selection method discussed in Section III-D, and a
training screening technique presented in Section III-E.

A. NS-AR Modeling

Since HSI data is non-stationary (NS) across the spectral dimension
[6], standard parametric AR models for stationary processes are not
applicable. However, approximate stationarity is still retained over
a sufficiently small number of adjacent spectral bands [6]. In the
following, we consider an NS-AR modeling approach by taking into
account such local stationarity of HSI data. Specifically, let xn(l)
denote the spectral response at the lth spectral band of the nth training
pixel xn. We slice xn into into L−Ls + 1 overlapping subvectors:
xn,l � [xn(l), . . . , xn(l + Ls − 1)]T , l = 0, . . . , L − Ls, where
Ls ≤ L denotes the length of the subvectors. For sufficiently small
Ls, each subvector xn,l can be modeled as an M th-order AR process:

xn(k) = −
PM

m=1
al(m)xn(k − m) + wn,l(k),

k = l, l + 1, . . . , l + Ls − 1; n = 1, . . . , N,
(2)

where wn,l(k) denotes the modeling residual for the lth subvector
xn,l. The residual is Gaussian (since xn(k) is so) with zero-mean and
variance σ2

l , and spectrally white so that {wn,l(k)} are independent
with respect to k and n. Note that the lth set of the AR coefficients,
al(1), . . . , al(M), is associated with the lth subvector xn,l, and
that different subvectors are associated with different sets of AR

1A Gaussian model might not be fully appropriate for some HSI data, and
alternative modeling approaches are available [5].
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coefficients. For simplicity, we consider an AR model of fixed model
order M . From the estimation perspective, the choice of M and
window size Ls should be made with tradeoffs among the bias,
variance and stationarity of the modeling approach [5]. From the
application aspect, these parameters are related to the HSI sensor
characteristics. For the HSI data used in this paper, we found that
a window size 8 ≤ Ls ≤ 15 is generally appropriate for modeling.
Once Ls is selected, we can use information criterion based model
order selection techniques to determine M . We leave the details to
Section III-D.

B. NS-AR Model Based Parametric Adaptive Detectors

Given the above NS-AR model (2) for target-free HSI data (i.e.,
the background), a time-series based (as opposed to the covariance-
matrix based) whitening process can be developed without explicitly
estimating Rb. This leads to a class of parametric adaptive detectors
that are summarized below:

• Step 1 (Parameter Estimation): Estimate {al(m)} and {σ2

l } in
(2) from the training {xn}

N
n=1 by using an ML based estimator

detailed in Section III-C. Let {âl(m), σ̂2

l } denote the estimates.
• Step 2 (Whitening): Perform whitening as follows:

x̆(l) = 1

σ̂l

h
x(l) +

PM
m=1

âl−Ls
(m)x(l − m)

i
,

s̆(l) = 1

σ̂l

h
s(l) +

PM
m=1

âl−Ls
(m)s(l − m)

i
,

(3)

where x̆(l) and s̆(l) are the lth output sample of the whitening
filter, l = Ls − 1, . . . , L − 1, when the input is test pixel x

and target signature s, respectively. Note from (3) that each set
of the NS-AR parameter estimates, i.e., {âl(m)}M

m=1 and σ̂l, is
used to compute only one pair of output samples x̆(l) and s̆(l).

• Step 3 (Detection): The outputs of the shift-varying whitening
filter can be used to form a decision statistic. Based on how
the decision statistic is formed, we have various (a class of)
parametric detectors. For example, the parametric counterpart
of the covariance-matrix based ACE [2] detector is

˛̨
˛PL−1

l=Ls−1
s̆(l)x̆(l)

˛̨
˛
2

“PL−1

l=Ls−1
s̆2(l)

” “PL−1

l=Ls−1
x̆2(l)

” H1

≷
H0

tNS-NPAMF, (4)

which is referred to as the NS-NPAMF detector, since it is also
an NS version of the normalized PAMF (NPAMF) detector [7].
An NS-AR model based AMF or Kelly test can be obtained in
a similar fashion [5].

Note that the above NS-NPAMF detector reduces to the NPAMF
detector, when Ls = L, that is, the sliding window reaches the
maximum value and includes the entire spectral bands. In that case,
the NS-AR model in (2) reduces to the standard stationary AR model.

C. ML Estimation of NS-AR Coefficients

The least-squares (LS) estimator for the NS-AR model introduced
in [6] is shown to be equivalent to an ML based estimator in [5],
which is presented next. Let xn,l � [xn(l+M), . . . , xn(l+Ls−1)]T

and

Xn,l �

2
64

xn(l + M − 1) . . . xn(l)
...

...
...

xn(l + Ls − 2) . . . xn(l + Ls − M − 1)

3
75 . (5)

Then, the ML estimates are given by

âl = −
“PN

n=1
X

T
n,lXn,l

”−1
“PN

n=1
X

T
n,lxn,l

”
, (6)

σ̂
2

l =[N(Ls − M)]−1
`
x

T
l P

⊥

X l
xl

´
, (7)

test region #1 

test region #3 

test region #2 

Fig. 1. HSI image of the Washington DC Mall with L=191 spectral bands.
Three test regions are highlighted in yellow.

where X l � [XT
1,l, . . . , X

T
N,l]

T , xl � [xT
1,l, . . . , x

T
N,l]

T , l =
0, 1, . . . , L − Ls, and P

⊥

X l
is the projection matrix onto the null

space of X l: P
⊥

X l
= I−X l

`
X

T
l X l

´−1

X
T
l , where I is an identity

matrix.

D. NS-AR Model Order Selection

Model order selection for parametric models is a classical topic
and has been investigated by various researchers for various models
(e.g., [8]). We examine selecting an appropriate model for the NS-
AR model in (2), which has not been addressed elsewhere. Although
in principle it is possible to select a different M for each subvector
xn,l, l = 0, . . . , L−Ls, by a separate fitting of M to the information
criterion, this is a tedious process. In the following, we use a fixed M

for all l. Specifically, we consider a generalized Akaike information
criterion (GAIC), which chooses the model order M that minimizes

W (M) =
PL−Ls

l=0
[Vl(M) + γ(M)] , (8)

where Vl(M) is the minimum cost (i.e., likelihood function) asso-
ciated with the lth set of subvectors x1,l, . . . , xN,l, and γ(M) is a
penalty term that penalizes increasing model order [8]. The minimum
cost is [5]

Vl(M) =
1

2
N(Ls−M)[1+ln(2π)]+

1

2
N(Ls−M) ln σ̂

2

l (M), (9)

where σ̂2

l (M) is given by (7) and the dependence on M is made
explicit. The penalty term typically takes the form [8]

γ(M) = α(M + 1) ln(NLs), (10)

or
γ(M) = α(M + 1) ln [ln(NLs)] , (11)

where M + 1 is the total number of unknowns for each set of
subvectors {xn,l}

N
n=1, NLs is the number of data samples contained

in {xn,l}
N
n=1, and α ≥ 2 is a parameter of user choice. Note that the

above GAIC reduces to the standard AIC when the (L−Ls+1)-term
summation in (8) vanishes and γ(M) = 2(M + 1). It is known that
AIC is not a consistent model order estimator. Choosing a penalty
term proportional to ln(NLs) or ln [ln(NLs)] is an effective way of
obtaining a consistent order estimate [8].

E. Training Screening

One assumption made in Section II is that the N training pixels
x1, . . . , xN are target-free. Training screening to eliminate “bad”
training data for detection in heterogeneous or dense-target environ-
ments has been examined in a number of recent studies for radar tar-
get detection (e.g., [9]). We discuss here screening of heterogeneous
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Fig. 2. Test region #1: target-background separation versus target fill factor,
where the red (dark) bars correspond to the range of test statistics under
H1, while the green (light) bars show the counterpart under H0. (a) ACE.
(b) NPAMF. (c) NS-NPAMF. (d) NS-LP-NPAMF.

HSI training data. Rather than treating it as an independent process,
we cast training screening within the proposed NS-AR framework.

For covariance-matrix based detectors, one screening approach is
to use the following metric [9]:

Tn = x
T
n R̂

−1

b xn, n = 1, . . . , N, (12)

where R̂b is the sample covariance matrix obtained from the training
pixels. Then, the metric is used to partition the training set S �
{x1, . . . , xN} into two disjoint sets S1 and S2 (see [9] for details),
of which the former contains the refined training data while the latter
contains outliers that are discarded.

The above training screening approach relies on an estimate of a
full-rank sample covariance matrix R̂b. To circumvent this, we note
that x

T
n R̂

−1

b xn = ‖x̃n‖
2, where x̃ � R̂

−1/2

b xn, i.e., the “whitened”
version of xn. The whitening operation can be equivalently imple-
mented in a time-series fashion by a whitening filter without the need
to estimate R̂b. This alternative screening approach is proposed in
[10] and referred to as the innovation power sorting (IPS) method,
since the output of the whitening filter is often called the innovation
of the input.

The IPS can be extended and cast within the NS-AR framework.
Specifically, we first use the ML estimator in Section III-C to estimate
the NS-AR parameters {âl(m), σ̂2

l } from the original training set
S. Next, we form a shift-varying MA whitening filter from these
parameter estimates and, similarly to (3), whiten the training set as
follows:

x̆n(l) = 1

σ̂l

h
xn(l) +

PM
m=1

âl−Ls
(m)xn(l − m)

i
,

l = Ls − 1, . . . , L − 1; n = 1, . . . , N.
(13)

Finally, we compute the following metric

Tn =
PL−1

l=Ls−1
x̆2

n(l), n = 1, . . . , N, (14)

which is used to replace (12) for the partition of S into S1 and S2.

IV. EXPERIMENTAL RESULTS

For comparison, we consider the covariance matrix based ACE test
[2], the AR model based NPAMF detector [7] (also see Section III-
B), our NS-AR model based NS-NPAMF detector (4), and a modified
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Fig. 3. Test region #2: target-background separation versus target fill factor,
where the red (dark) bars correspond to the range of test statistics under
H1, while the green (light) bars show the counterpart under H0. (a) ACE.
(b) NPAMF. (c) NS-NPAMF. (d) NS-LP-NPAMF.

version called NS-LP-NPAMF that is briefly explained below. All
these detectors use normalized test statistics bounded between 0
and 1, and thus are convenient to compare with. The modification
made in the NS-LP-NPAMF detector is due to an observation that
HSI spectral data exhibit small oscillations [5]. Such oscillations
along the spectral dimension do not contribute much to detection,
meanwhile making parameter estimates more noisy. It was found that
passing the HSI data through a lowpass (LP) filter to first remove
those oscillations before applying the proposed NS-AR modeling,
estimation, and detection techniques is helpful. Our NS-NPAMF
detector (4) with such a modification is called NS-LP-NPAMF.

We use an HSI data set provided in [1]. Fig. 1 is a color infrared
(IR) image from a portion of the data set, which shows a view of an
airborne hyperspectral data flightline over the Washington DC area.
Detailed information on this data set can be found in [1]. Three test
regions are highlighted. Test region #1 is relatively homogeneous and
formed by grass, test region #2 is less homogeneous with tree and
road, and test region #3 corresponds to a heterogeneous environment.
To simulate the H1 condition, we superimpose a target signal to
the test pixel. The target signal corresponds to the spectral signature
of a man-made object (taken from a pixel in Fig. 1), and is scaled
according to particular target fill factors (see [2] for definition of fill
factor).

A. Detection in Homogeneous Environments

The figure of merit used is the separation of test statistics under
H0 and H1 [2]. For all methods, we use N = 8 training pixels, which
corresponds to a 3× 3 region without counting the center pixel (i.e.,
test pixel), for sample covariance matrix or parameter estimation.
The sample covariance matrix R̂b is rank deficient in this case. As
suggested in [2], we use the approximation R̂

−1

b ≈ I − U 1U
T
1 ,

where U 1 is formed by the principle eigenvectors of R̂b, for the
ACE detector. In this and all other examples, the sliding window
length is Ls = 10 for NS-NPAMF and NS-LP-NPAMF, and the
model order is M = 5 selected according to the criterion in Section
III-D.

Figs. 2(a) to 2(d) depict the test statistic separation of the four
detectors versus the target fill factor for test region #1. As expected,
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Fig. 4. Test statistics of ACE and NS-LP-NPAMF of test pixels in the
test region #3 with 5 embedded targets. (a) ACE without training screening.
(b) NS-LP-NPAMF without training screening. (c) ACE with training screen-
ing. (d) NS-LP-NPAMF with training screening.

NPAMF suffers degradation as stationary AR modeling is unsuited for
HSI data. Both NS-NPAMF and NS-LP-NPAMF outperform the ACE
test, with NS-LP-NPAMF being slightly better than NS-NPAMF.
Meanwhile, Figs. 3(a) to 3(d) depict the counterpart results for test
region #2, which is less homogeneous than test region #1. It is seen
that all four detectors experience some degradation relative to the
previous results. However, the proposed NS-NPAMF and NS-LP-
NPAMF detectors, especially the latter, still significantly outperform
the others.

B. Detection in Heterogeneous Environments

We now consider detection in heterogeneous environments. To this
end, we embed 5 targets at randomly chosen locations in test region
#3. We run the ACE and NS-LP-NPAMF detectors throughout the test
region pixel by pixel, with and without training screening. If training
screening is not applied, we use the N = 8 pixels surrounding
the test pixel for training. Otherwise, we first compute metric (12)
for the ACE detector and, respectively, metric (14) for the NS-LP-
NPAMF detector using all pixels within the test region, and then the
metrics are used to select N = 8 new training pixels to refine the
parameter/covariance matrix estimate. Figs. 4(a) to 4(d) depict the test
statistics of the two detectors, with and without training screening,
versus the index of the pixels within the test region. The dotted lines
in these plots indicate the indices/locations of the embedded targets.
By comparing the results, it is seen that training screening helps both
detectors. It is also seen that the proposed NS-LP-NPAMF detector
outperforms (i.e., achieves better separation of test statistics under
H0 and H1) the ACE detector with or without training screening.

Finally, we consider a dense-target scenario by embedding not only
5 targets but also outliers in test region #1. In particular, about 20%
of the pixels at random locations in the region are embedded with
outliers that have a different spectral signature from that of the target.
Figs. 5(a) to 5(d) show the test statistics of the ACE and NS-LP-
NPAMF detectors with and without training screening. It is seen that
the NS-LP-NPAMF detector overall achieves a better performance
than the other.
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Fig. 5. Test statistics of ACE and NS-LP-NPAMF of test pixels in the
test region #1 with 5 embedded targets and more than 20% of the pixels
are embedded with outliers. (a) ACE without training screening. (b) NS-LP-
NPAMF without training screening. (c) ACE with training screening. (d) NS-
LP-NPAMF with training screening.

V. CONCLUSIONS

We have developed a class of parametric adaptive detectors by
exploiting an NS-AR model for HSI data, and addressed a range of
issues including model order selection, training screening, parameter
estimation, time-series based signal whitening, and detection. Exper-
imental results show that the proposed parametric detectors are more
efficient in training data usage and outperform the covariance-matrix
based methods when training is limited.
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