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ABSTRACT

This paper develops (and applies) a hybrid target detector that
incorporates structured backgrounds and physics based mod-
eling together with a geometric infeasibility metric. More
often than not, detection algorithms are usually applied to
atmospherically compensated hyperspectral imagery. Rather
than compensate the imagery, we take the opposite approach
by using a physics based model to generate permutations of
what the target might look like as seen by the sensor in radi-
ance space. The development and status of such a method is
presented and applied to the generation of target spaces. The
generated target spaces are designed to fully encompass im-
age target pixels while using a limited number of input model
parameters. Additionally, a Structured Infeasibility Projector
(SIP) is developed which enables one to be more selective in
rejecting false alarms. Results on HYDICE data show that the
SIP algorithm, in conjunction with a physics based detector,
outperforms results from the SAM and SMF algorithms for a
target that is both fully sunlit and obscured by a tree canopy.

1. INTRODUCTION

This paper investigates a geometric hybrid technique for the
detection of subpixel targets in uncompensated image spec-
trometer data. Physical models are used to predict what the
sensor-reaching radiance looks like based on direct solar il-
lumination, upwelled and downwelled radiances as well as
reflectivity of the target. This approach uses an atmospheric
propagation model to produce an illumination invariant (ra-
diance) target space that can be used in the detection scheme
outlined in this paper.

The approach we take throughout this research is geo-
metric or structured in nature. Therefore, in developing our
hybrid algorithm, we describe the background data using a
linear subspace approach characterized by endmembers. We
then present a detector that tells us how much influence the
background space has on an image pixel. The output of such
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a detector is an abundance-like term where large values are
synonymous with targets. In general, however, the output of
the detector may produce large values, not only for actual tar-
gets, but for any other spectral anomaly that has a signifi-
cant projection (e.g., a bright or saturated pixel) thus produc-
ing false alarms. Geometrically, we recognize where these
cases can occur. We note that there exists many different im-
age pixels that can have the same background influence or
abundance. These pixels may manifest themselves as false
positives. We separate such pixels through incorporation of
an operator called the Structured Infeasibility Projector (SIP)
which is applied to a physically derived target space. To-
gether, the detector and SIP form a hybrid algorithm called the
Physics Based-Structured InFeasibility Target-detector (PB-
SIFT). The detector’s performance is demonstrated by com-
paring the hybrid algorithm to the spectral angle mapper (SAM)
and spectral matched filter (SMF) detectors. These algorithms
are applied to HYDICE imagery. Analysis is made through
use of Receiver Operating Characteristic (ROC) curves.

2. BACKGROUND AND THEORY

2.1. Physics Based Modeling(PBM) and Target Spaces

In target detection, we often seek to atmospherically com-
pensate hyperspectral imagery so as to convert sensor reach-
ing radiance to ground leaving spectral reflectance. Once
the imagery has been compensated, detection algorithms are
used to compare image reflectances to library or measured re-
flectances in search of a desired target. Rather than compen-
sate the imagery, an alternative is to estimate what the ground
leaving spectral reflectance would look like as seen by the
sensor in radiance space [1]. This approach entails modeling
the propagation of a target reflectance spectrum through the
atmosphere up to the sensor. The advantage this technique
has over that of compensated imagery is that target illumina-
tion variations can be integrated into the process through use
of a physical model thus making the approach invariant to il-
lumination effects. Schott [2] derives such a physical model
for the spectral radiance reaching an airborne or satellite sen-
sor which incorporates direct illumination variation as well as
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downwelling and upwelling (or path) radiance. This can be
expressed in simplified form as

Lp(λ) =
∫
λ

βp(λ)
[(

E′
s(λ)τ1(λ) cos θ +

FEd(λ)
)
τ2(λ)

r(λ)
π

+ Lu(λ)
]
dλ (1)

where Lp(λ) is the effective spectral radiance in the pth band
in units of [Wcm−2sr−1µm−1], E′

s(λ) is the exoatmospheric
spectral irradiance from the Sun in units of [Wcm−2µm−1],
τ1(λ) is the transmission through the atmosphere along the
Sun-target path, θ is the angle from the surface normal to the
Sun, F is the fraction of the spectral irradiance from the sky
(Ed(λ)), incident on the target (i.e., not blocked by adjacent
objects), sometimes called shape factor, τ2(λ) is the trans-
mission along the target-sensor path, r(λ) is the spectral re-
flectance factor for the target of interest (i.e., r(λ)/π is the
bidirectional reflectance [sr−1]), Lu(λ) is the spectral path
radiance [Wcm−2sr−1µm−1], and βp(λ) is the normalized
spectral response of the pth spectral channel of the sensor un-
der study where

βp(λ) =
β′

p(λ)∫
β′

p(λ) dλ
(2)

with β′
p(λ) being the peak normalized spectral response of the

pth channel. Schott [2] also describes how the MODTRAN
radiative transfer code [3] can be used to solve for each of
the radiometric terms in Eq. (1) (i.e., E′

s(λ), τ1(λ), τ2(λ),
Ed(λ), and Lu(λ)) given a set of atmospheric and illumina-
tion descriptors. Once the terms are solved for, the spectral
radiance target vector x observed by a p-channel sensor can
be expressed as

x = [L1(λ), L2(λ), . . . , Lp(λ)]T . (3)

In practice a family of radiance vectors is usually gener-
ated to account for lack of knowledge about the atmospheric,
illumination and viewing conditions. This is accomplished
by varying the inputs to MODTRAN to span a range of vari-
ables. In doing so, a wide range of potential target spectral
vectors spanning a target space can be generated from a sin-
gle target reflectance spectrum. In general, many of the in-
put parameters to MODTRAN are usually know at the time
of image acquisition or can be reasonably estimated (e.g., at-
mospheric and aerosol model, day of year, location, time of
day, etc.). For this research, emphasis is placed on varying un-
known MODTRAN parameters such as visibility, water vapor
scale factor and ground topography. In the case of water va-
por scale factor, a physics based atmospheric compensation
algorithm can be used to estimate per pixel total column wa-
ter vapor which can then be converted to an appropriate range
of scale factors. In addition to MODTRAN input parameters,

terms such as target orientation and shape factor (F) are also
varied. Details on the importance these parameters have on
derived target spaces and detection can be found in the litera-
ture [4].

2.2. Structured Detection and Infeasibility Metric

If the target and background spaces are described using geo-
metric techniques then the application of a detector based on
vector geometry is most appropriate. One such algorithm that
relies on (orthogonal) projections is the Orthogonal Subspace
Projection (OSP) detector [5]. This can be expressed to in-
clude input from target spaces such that we have

TPBosp(x) =
‖PTP⊥

Bx‖
‖PTP⊥

Btavg‖
(4)

where PT = TT† where T† is the pseudo-inverse of T de-
fined as T† = (TT T)−1TT and P⊥

B = I − BB†. Matrices
T and B are matrices comprised of endmembers (in columns)
that span the target and background subspaces, respectively.
The vector tavg is the average target space spectrum.

The structured infeasibility projector (SIP) provides for a
measure of un-target-like behavior by projecting the test pixel
onto the subspace orthogonal to the target space and is ex-
pressed as

TSIP (x) = ||P⊥
Tx|| (5)

where P⊥
T = I − TT†. The detector of Eq. (4) and SIP met-

ric of Eq. (5) form the Physics Based-Structured InFeasibility
Target-detector (PB-SIFT) which produces a two dimensional
decision space where probable targets have large abundances
and low SIP scores. This concept of using an added “infeasi-
bility” metric similar to what the SIP produces was motivated
by the original work of Boardman [6]. Here, the developed
infeasibility concept was stochastic in nature where in this
research we set out to develop a geometric equivalent. This
metric can also be extended to include the joint statistics of
target and background spaces [4].

Two other detectors were used in this research as a means
of comparison to the PB-SIFT algorithm. The spectral angle
mapper (SAM) generates a test statistic based on the angle
between the target and image pixel vectors assuming a target
pixel has been manually identified in the scene. The spectral
matched filter (SMF) normalizes the target and image pixel
product with an image wide covariance estimate, Σ. That is

TSMF (x) = (t − µb)
T Σ−1(x − µb) (6)

where µb is the mean of the background. This algorithm also
assumes the target vector has been identified in the scene or
that the scene has been atmospherically compensated and the
target spectrum is known from a reflectance library.

V  1194



Fig. 1. Generated ROC curves for a fully sunlit target in an
open field.

3. RESULTS

All the previously discussed algorithms were applied to two
different HYDICE flight lines. The target of interest was a
green panel that was placed in an open field in one flight
line and then moved into a forested region obscured by tree
canopy in a different flight line. The PB-SIFT algorithm was
applied to calibrated radiance data while the SAM and SMF
algorithms were applied to atmospherically compensated data
using the Empirical Line Method (ELM). Target spaces were
constructed by varying 4 visibility values, 3 elevation values,
5 water vapor scalar factor values, 3 target orientation values,
and 1 to 3 shape factor values, which depended on whether
or not the target was obscured. The target and background
spaces were then represented using endmembers found using
the Maximum Distance method (MaxD) [7] and used in Eq.
(4) and (5).

The results of identifying 35 full and mixed target pix-
els from the sunlit scene can be seen in Figure 1 where we
have used two implementations of the PBosp algorithm. One
approach characterized the target space using 7 endmembers
(PBosp bv) while the other approach represented the target
space using only the mean vector (PBosp mean). We immedi-
ately see that the physics based approach can perform as well
as the SAM and SMF algorithms, which rely on atmospheric
compensation. Figure 2 shows a similar trend for the case
when the target was placed under tree canopy in a forested
area. However, it is noted that the SAM algorithm performs
extremely poor here and shows up at the bottom of the plot as
zero detects.

When we combine the PBosp and SIP results, we gener-
ate 2 dimensional decision spaces like those in Figures 3 and
4. Here we see that most pixels have low abundances and
are associated with the background. Interesting pixels tend
to manifest themselves outside this background distribution.
If we simply set a threshold based on the detector test sta-
tistic (abundance) only, we can see that we will incur many

Fig. 2. Generated ROC curves for a target fully concealed by
tree canopy in a forested region.

Fig. 3. Two dimensional decision space created using a de-
tector with an added infeasibility metric, as applied to sunlit
target imagery.

false alarms for both the fully sunlit and obscured targets.
However, we can mitigate these false alarms and therefore
improve performance by setting an additional constraint for
the SIP values on the x-axis. If we apply this method of im-
provement to the PBosp bv case we get the results shown in
Figures 5 and 6. As we shift the threshold to lower SIP val-
ues we can see the algorithms performance increasing to the
point where it now outperforms all algorithms for both levels
of target concealment.

4. CONCLUSIONS

The research presented in this paper explored new methods of
improving target detection using the concept of physics based
modeling. The work builds upon an original body of work
related to detection using illumination invariant subspaces. In
this paper we refined the process of creating target spaces as
well as developed a detector that could adapt to such target
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Fig. 4. Two dimensional decision space created using a detec-
tor with an added infeasibility metric, as applied to canopy-
obscured target imagery.

Fig. 5. Improved PBosp bv algorithm performance by vary-
ing the SIP threshold for the sunlit target imagery.

Fig. 6. Improved PBosp bv algorithm performance by vary-
ing the SIP threshold for the canopy-obscured target imagery.

spaces. In addition, we extended the detection process to in-
corporate an added geometric infeasibility measure. The al-
gorithms were tested on HYDICE data where results showed
that the physics based approach performs as well as meth-
ods that used (research grade) atmospherically compensated
imagery. Furthermore, the PB-SIFT approach actually out-
performed both the SAM and SMF algorithms for both the
sunlit and canopy-obscured test imagery. Future efforts will
address the inclusion of sensor noise and calibration errors
into the target space as well as its impact on detector per-
formance. Additionally, a criteria needs to be established on
where to set the decision boundary in addition to further de-
veloping the SIP by incorporating the joint statistics of target
and background spaces.
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