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ABSTRACT

Hyperspectral data form a data-cube consisting of images of 

an object collected at several hundred, closely spaced 

wavelengths. They have been found to be of significant 

potential benefit in areas such as remote sensing of the 

Earth, medicine, and non-destructive evaluation. Effective 

extraction of information from the hyperspectral data cube 

presents several signal processing challenges, some of them 

unique to hyperspectral data. The problems involved range 

from registration and enhancement to development of 

statistical signal processing algorithms and models for 

object detection and classification. The focus of this paper is 

to provide an overview of select processing and modeling 

techniques for hyperspectral data. 

1. INTRODUCTION 

Since the beginning of remote sensing technology, a 

number of sensors have been developed to observe the 

Earth’s surface [1]. The observed data form an image, a 

collection of radiance or reflectance of each pixel at the 

wavelength of interest. Hyperspectral imaging provides the 

capability to characterize and quantify the Earth’s diverse 

environments in considerable detail using several hundred 

contiguous wavelength bands typically ranging from the 

visible to the infrared regions [2].  Many sensors such as the 

airborne AVIRIS, HYDICE, HYMAP and the spaceborne 

HYPERION have been developed for gathering 

hyperspectral signals. The sheer increase in the volume of 

available hyperspectral data has created the need for the 

development of signal processing techniques that can 

automate information extraction. These techniques need to 

be objective, reproducible, and feasible to implement within 

available resources [3].

A hyperspectral data-set, referred to as a hyperspectral

image cube, can be visualized as a 3-D stack, or sequence of 

2-D grayscale images each of which is obtained at a specific 

wavelength. Since an almost continuous spectrum can be 

generated for a pixel, hyperspectral imaging is also referred 

to as imaging spectrometry.

The number and variety of potential applications for 

hyperspectral imaging is enormous , which brings 

challenges in processing of hyperspectral data that are 

different from multispectral image processing. The majority 

of the processing algorithms fall into four primitive 

application-specific tasks : searching for rare pixels in 

the hyperspectral cube (target detection), finding changes 

between two scenes (change detection), assigning a label to 

each pixel (classification), and estimating the fraction of the 

pixel area covered by each material type. 

[4]

[4]

In the remainder of the paper, we enumerate the steps 

typically used in hyperspectral data processing and highlight 

two problems that are representative of demonstrating how 

hyperspectral data analysis problems can be cast into 

frameworks based on signal processing models for their 

solution.

2. HYPERSPECTRAL DATA PROCESSING 

The whole process of hyperspectral imaging may be divided 

into three steps: preprocessing, radiance to reflectance 

transformation and data analysis. Preprocessing is required 

for the conversion of raw radiance into at-sensor radiance. 

This is generally performed by the data acquisition agencies 

and the user is supplied with the at-sensor radiance data. 

The processing steps involve operations such as spectral 

calibration, geometric calibration and geocoding, signal to 

noise adjustment, de-striping etc. Further, due to 

topographical and atmospheric effects, various spectral and 

spatial variations may occur in at-sensor radiance. 

Therefore, the at-sensor data need to be normalized in the 

second step for accurate determination of the reflectance 

values in different bands. A number of atmospheric models 

and correction methods have been developed to perform this 

operation. A detailed overview of the first two steps can be 

found in refs.   and [5] [6]

Data analysis is aimed at extracting meaningful 

information from the hyperspectral images. A limited 

number of image analysis algorithms were developed earlier 

to exploit the extensive information contained in 

hyperspectral signals for the applications stated above. 

While some have demonstrated significant success, the 

combination of physical and mathematical modeling that 

optimally extracts information from hyperspectral signals is 

still to be determined .[7]
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3. LINEAR MIXTURE SEPARATION AND 

INDEPENDENT COMPONENT ANALYSIS 

The ground footprint of each hyperspectral pixel can cover 

a relatively large area. Thus, each pixel can include several 

different types of cover such as, for example, grass, soil and 

asphalt. The hyperspectral vector corresponding to each 

pixel is, therefore, modeled as a linear combination of 

“endmember” spectra, that is, the spectra of known basic 

material: 

 (1) x = As

Here x is the pixel vector, the columns of A are the 

endmembers and s is the mixing vector which provides the 

proportionate abundance of each endmember component. 

We require 

 (2) 0i

i

s and s 1i

for the components is of s.

Given A, one needs to estimate s. Often both A and s are 

unknown, in which case the problem resembles Blind 

Source Separation (BSS). Each component of s is a source 

value, A is a mixing matrix and x is the vector of 

observations. Typically there are many more spectral 

components than endmembers. 

Independent component analysis (ICA) [8] has been applied 

to the problem of recovering A and s from x. One proposed 

approach [9] models each source as non-Gaussian. In this 

approach, the observation is first whitened to obtain 

y = Hs  (3) 

with 

,
1 1

- -
T T2 2y = E E x H = E E H

where E is the matrix of eigenvectors of E T
xx and is

the diagonal matrix of corresponding eigenvalues. The 

following optimization is then performed: 

arg max kurtosis

subject to 1.

T
w w

w

y
 (4) 

The basis for maximizing a non-Gaussianity measure 

such as the kurtosis is provided by the reasoning that a 

linear combination of non-Gaussian random variables is 

closer to Gaussian than each individual random variable. 

Thus, each maximum of the objective function likely 

corresponds to a value of w for which the row vector 

has a high value in one of its components and values 

close to zero in the rest. As many values of w are computed 

at maxima as the number of endmembers and equations are 

solved to determine and s using 

T
w H

H (2) and (3). Matrix H is 

then determined from H . References [10]-[13] provide a 

more detailed treatment of ICA. 

The mixture model concept of ICA can be extended 

further to perform unsupervised classification of remote 

sensing images, where the distribution of the entire data is 

modeled as a weighted sum of the class-component 

densities [14]. When the class-component densities are 

assumed to be multivariate Gaussian, the mixture model is 

known as the Gaussian mixture model. However, if a class 

happens to be multimodal, it is no longer appropriate to 

model the class with a multivariate Gaussian distribution 

and, as we have seen, ICA exploits higher order statistics in 

multivariate data. The ICA mixture model (ICAMM) 

algorithm [15], derived from ICA, can be implemented for 

unsupervised classification of non-Gaussian classes from 

hyperspectral data [16].

4. SUB-PIXEL OR SUPER RESOLUTION MAPPING 

AND MARKOV RANDOM FIELDS 

Occurrence of mixed pixels in remote sensing images is 

a major problem particularly at coarse spatial resolutions 

such as those obtained, for example, from the hyperspectral 

MODIS sensor. By mixed pixels we mean, as in the 

previous section, the situation where the spectral data of a 

pixel correspond not just to one material but to a mixture of 

more than one. Therefore, sub-pixel classification is often 

preferred, where a pixel is resolved into various class 

components (also called class proportions or fractions). In 

sub-pixel classification, a pixel is decomposed into a 

number of component classes by assigning membership 

grades to each class within the pixel [17]. These 

membership grades or values reflect the proportions of 

classes in a mixed pixel. Some of the prevalent techniques 

used for sub-pixel classification are fuzzy c-means 

clustering, LMM and artificial neural networks. 

Under most circumstances, classification at the sub-

pixel level is meaningful and informative. However, it fails 

to account for the spatial distribution of class proportions 

within the pixel [18]. An alternative approach is to consider 

the spatial distribution of class proportions within and 

between pixels to perform sub-pixel super resolution 

mapping (i.e. mapping at a spatial resolution finer than the 

size of the pixel of the image). Tatem et al., [19] provide an 

excellent review on this subject. A range of algorithms 

based upon knowledge-based procedures, Hopfield neural 

networks, linear optimization, genetic algorithms and neural 

network predicted wavelet coefficients, have been proposed 

for super-resolution mapping. Markov random field (MRF) 

models are also well suited to represent the spatial 

dependence within and between pixels. 

Under an MRF model, a statistical correlation of 

intensity levels among neighboring pixels can be exploited. 

MRF has long been recognized as a useful model to 

describe a variety of image characteristics such as texture. 

Under this model, the configuration (intensity level) of a 

site (pixel) is assumed to be statistically independent of 

configurations of all remaining sites excluding itself and its 

neighboring sites when configurations of its neighboring 

sites are given. In other words, the configuration of a pixel 

given the configurations of the rest of the image is the same 
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as the configuration of a pixel given the configurations of its 

neighboring pixels. This can mathematically be represented 

as:

Pr ( ) Pr ( ) ( )tx t X x t X NtT -  (5) 

where tT -  is the set of all the pixels in T  excluding 

the pixel t, and Nt is the set of pixels in the neighborhood of 

pixel t. For example, in the context of classification of 

remotely sensed images, this property implies that the same 

class is more likely to occur in connected regions than at 

isolated pixels. Hence, the conditional probability density 

functions (PDFs) in Eq. (5) have a higher value if the 

configuration of a pixel t is similar to the configurations of 

its neighboring pixels than the cases when it is not. From 

[20] and [21], the marginal PDF of X takes the form of 

Gibbs distribution,  

1
Pr( ) exp ( )C

C

X V X
Z T

 (6) 

This model may fit in a variety of remote sensing 

applications. For instance, in a classification problem, the 

spatial structure is usually in the form of homogenous 

regions of classes. As a result, an MRF model based 

approach assigns higher weights to these regions than to the 

isolated pixels thereby accounting for spatial dependence in 

the dataset. The approach is based on an optimization 

whereby raw coarse resolution images are first used to 

generate an initial sub-pixel classification, which is then 

iteratively refined to accurately characterize the spatial 

dependence between the class proportions of the 

neighboring pixels. Thus, spatial relations within and 

between pixels are considered throughout the generation 

process of the super resolution map. The implementation of 

MRF model for the generation of sub-pixel maps from 

HYMAP sensor can be seen in Kasetkasem et al. [22].

4. CONCLUSION 

Hyperspectral imaging is a fast growing area in remote 

sensing for a variety of applications related to the Earth’s 

environment. The field poses various problems that fit 

naturally into a signal processing framework. It is hoped 

that the papers in this special session will motivate more 

members of the signal processing community to investigate 

the development of solutions to these problems. 
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