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ABSTRACT
We propose an adaptive multiresolution (MR) approach for classi-
fication of fluorescence microscopy images of subcellular protein
locations, providing biologically relevant information. These im-
ages have highly localized features both in space and frequency
which naturally leads us to MR tools. Moreover, as the goal of
the classification system is to distinguish between various protein
classes, we aim for features adapted to individual proteins. These
two requirements further lead us to adaptive MR tools. We start
with a simple classification system consisting of Haralick texture
feature computation followed by a maximum-likelihood classifier,
and demonstrate that, by adding an MR block in front, we are
able to raise the average classification accuracy by roughly 10%.
We conclude that selecting features in MR subspaces allows us
to custom-build discriminative feature sets for fluorescence mi-
croscopy images of protein subcellular location images.

1. INTRODUCTION AND MOTIVATION

A study of cell function and behavior is important in understanding
the development of certain diseases. As proteins are integral com-
ponents of cell function, it is critical to understand their properties
such as structure and localization. Advances in biochemistry and
biocellular microscopy make it possible to collect large amounts
of data sets depicting protein localization within the cell. How-
ever, processing of these data sets is still mostly manual, making
the process inefficient and error-prone. This raises the need for au-
tomated classification of subcellular protein location images. Mur-
phy et al. [1] pioneered automation for classification of subcellular
protein location patterns and demonstrated that they can be distin-
guished with reproducible specificity and sensitivity.

In classifying subcellular protein locations, a host of methods
should be considered. In particular, MR techniques provide adap-
tive space-frequency localization enabling a customized descrip-
tion of nonstationarities present in the signal. In particular, the
wavelet packet transform, an MR tool, has been successfully ap-
plied in biometric fingerprint recognition [2]. While these adaptive
flavors of MR techniques have been explored for pattern classifi-
cation in various domains [3], to date, they have not been tried
on subcellular location patterns. As our protein images are beset
with nonstationarities, we hypothesize that designing MR features
adapted to the signal rather than just the space or frequency fea-
tures alone would yield improvement in classification accuracy.
Testing this hypothesis is the goal of this paper.
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Fig. 1. Typical images from the 2D HeLa collection.

2. BACKGROUND

Location Proteomics. Automated classification in location pro-
teomics (study of location for all proteins) developed by Murphy
et al. [1], uses data sets depicting protein localization within the
cell. These data sets are segmented into single-cell images, and af-
ter some preprocessing, features drawn from various categories—
termed subcellular location features (SLF)—are computed. For
example, in [4], Haralick texture features, which measure repeti-
tive local patterns [5], have been used with some success in classi-
fication. Combining these texture features with a number of other
feature types such as morphological features and Zernicke mo-
ments along with classical classifiers, lead to a classification accu-
racy of 86% [6]. On performing Stepwise-Discriminant-Analysis
(SDA), to rank and select only the most discriminative features, a
significant number of texture features were selected. To this were
added the Gabor and Daubechies wavelet features to capture fur-
ther information embedded in the images. Using a total of 174
features, followed by SDA and subsequent classification using an
ensemble of classifiers, yielded an accuracy of 91.5% [7]. Our aim
is to test whether adaptive MR features extract further information
from those same data sets.

Formulation of a Signal Classification Problem. The design
of an automated classifier can be formulated as designing a map
from the signal space of protein localization images X ⊂ R

m×m,
to a response space Y ⊆ {1, 2, ..., C} of class labels. Thus, deci-
sion d is the map, d : X �→ Y that associates an input image with
a class label [3]. Since the signal space is overly redundant and
direct manipulation of signals is prohibitive (typically m = 512),
we must reduce dimensionality. Thus, we set up a feature space
F ⊂ R

k, k ≤ m2, between the input space and the response
space. The feature extractor θ is the map θ : X �→ F , and the clas-
sifier ψ is the map ψ : F �→ Y . Further, the input space X is par-
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Fig. 2. (a) Two channel analysis filter bank for 2D signals. The filter h is a highpass filter and g is a lowpass filter. (b) A 2-level MR filter
bank decomposition of Actin. The upper left image is the coarse representation. The other images are the detailed representations.

titioned into a training set T ⊂ X ⊕Y = {xc,n, yc}C,N
c=1,n=1 used

to design d and a testing set T ′ = {x′
c,n′ , y′

c}C,N′
c=1,n′=1, T ∩ T ′

∅,
used to measure its performance. (N and N ′ refer to the number
of images in each class of T and T ′ respectively.) The goal is to
find a (θ, ψ) pair that maximizes the classification accuracy.

3. PROPOSED ALGORITHM

As we said, we aim to augment the features computed on the orig-
inal image with any discriminative texture information in the sub-
bands resulting from an adaptive MR decomposition. Those fea-
tures are then modeled in order to measure their discriminative
content (see Fig. 3). The goal is to ensure the augmented classifier
does no worse than the classifier using the original image alone,
and improve the average classification accuracy. A probabilistic
measure of the discriminative power of a subband is used to weigh
the decision obtained from a subband. We perform a convex com-
bination of the decisions from the subbands to obtain a class label.
The algorithm is split into two phases, the training phase and the
testing phase, which we now describe (each step corresponds to a
block in Fig. 3).

3.1. Training Phase

Input: Training set T .
Output: A set G of Gaussian models for each class c
and a weight vector ω.

We first choose the family of filters, that is, the bases h and g
for the filter bank (see Fig. 2(a)), the number of levels L for the
decomposition and the maximum number of clusters allowed per
class, K, for the pdf modeling using the K-means algorithm.

Wavelet Tree: Conduct a full wavelet packet tree decomposi-
tion of L levels on the training images, that is, perform W : X �→
V where W is the projection of the image onto the transform do-
main and V is the set of subband representations of the training
images. There are S = (4L+1−1)/3 nonredundant subspaces cor-
responding to each input image, that is, xc,n = [tc,n,1, ..., tc,n,S],
with each subband inheriting the class label yc. (tc,n,s denotes the
subband s of image n of class c.)

Feature Extraction: Compute F Haralick texture features on
each subband, that is, H : V �→ F ; where H is the texture feature
computation and F is the set of all features corresponding to the

various subbands of an image. An element of F is of the form
tc,n,s,f , 1 ≤ f ≤ F .

K-Means and Gaussian Modeling: The training set is mod-
eled as set of Kc F-variate Gaussian pdfs in each subspace as fol-
lows: for s = 1, . . . , S, i = 1, . . . , N, c = 1, . . . , C , we per-
form the K-means clustering on tc,n,s for every n �= i to obtain
at most K clusters in each of the C classes. We model each clus-
ter, Gc,i,s,k, as an F-variate Gaussian pdf with mean µc,i,s,k and
variance σc,i,s,k. The probability of tc,i,s belonging to a class j is
computed as

Pj(tc,i,s) = P (tc,i,s ∈ class j)

=

∑Kj

k=1 l(tc,i,s ∈ class j, cluster k)∑C
m=1

∑Km
k=1 l(tc,i,s ∈ class m, cluster k)

,

with
l(tc,i,s ∈ class m, cluster k) =

1√
(2π)F |Σj,i,s,k|

exp{−1

2
(tc,i,s−µj,i,s,k)T Σ−1

j,i,s,k(tc,i,s−µj,i,s,k)},

for 1 ≤ j ≤ C and Σj,i,s,k = diag(σj,i,s,k). Effectively, every el-
ement tc,n,s of the training set is now represented by a single prob-
ability vector P(tc,n,s) with |(P(tc,n,s)| = C. The map from the
feature space to the probability space is M : F �→ P . Thus, our
feature extractor θ = M◦H ◦W . Note that the set G of Gaussian
models is computed using all of the training images in T .

Initialization of the Weight Vector: Define a decision vector
d = [

∑N
n=1 d(t1,n,s), . . . ,

∑N
n=1 d(tC,n,s)] for each subband of

the training set, such that

d(tc,n,s) =

{
1 if arg maxc(P(tc,n,s)) = yc,
0 otherwise.

We compute the weight for each subband as:

ωs =
C∑

c=1

N∑
n=1

d(tc,n,s)/(CN).

We then form ω = [ω1, . . . , ωS ] and normalize so that ω =

ω/
∑S

s=1 ωs, where ωs gives the significance of the information
contained in subband s.

Evolution of the Weight Vector: Compute the probability vec-
tor corresponding to each image as P(tc,n) =

∑S
s=1 ωsP(tc,n,s).

The overall decision the subbands reach is computed as

d = arg max
c

(P(tc,n)).
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Fig. 3. The training phase of our MR classifier.

If the class label d is correct, that is, d = yc, the weights are
unaltered; if not, then the weights are updated as

ωs,new =

⎧⎪⎨
⎪⎩

(1 + inc)ωs,old if subband s contributes
to a correct decision

(1 − inc)ωs,old otherwise,

where 0 ≤ inc < 1. This step is repeated for η epochs over the
entire training set. The weight vector ω is output at the end of this
step. Thus, our classifier is the map ψ : P �→ Y that selects the
most likely class from a set of class membership likelihoods ob-
tained as a convex combination of the decisions of the subbands.

3.2. Testing Phase

Input: Testing set T ′, the set of Gaussian models G
and the weight vector ω.
Output: A set of decisions (class labels),
one corresponding to each test image.

Preparation of Data: Decompose the data to L levels and
compute Haralick texture features on each subband. Then, using
the Gaussian model G, obtain the probability vector correspond-
ing to each image xn′ , that is, perform feature extraction θ(X ′) to
obtain probability vectors P(t′c,n′,s).

Decision: Apply the weight vector ω to each of the image
probability vectors P(t′c,n′) and obtain the decision d that is a
class label, using ψ : P ′ �→ Y ′, where d = arg maxc(P(t′c,n′)),
t′c,n′ being the testing image n′ from class c. A confusion matrix
is computed from the decisions made on the set of testing images
to evaluate the performance of the system.

3.3. Enhancing the System with PCA

Principal Component Analysis (PCA) is a method used to reduce
the dimensionality of the feature vectors. It also allows us to ex-
press the features in a space spanned by an orthogonal set of vec-
tors viz. eigenvectors. We use these two properties to our advan-
tage. First, representing our feature vectors in their eigenspaces
could help the clustering algorithm and certainly contribute to tak-
ing our models closer to our assumption of joint Gaussian vec-
tors. Second, reducing the dimension of the vectors helps gain a
deeper insight to the behavior of the data in the feature space. It
also assists the classifier as there are fewer numbers characterizing
each class. Based on the above considerations, we chose PCA over
other techniques (such as SDA) for reducing the dimensionality of
the feature vectors of our system.

We introduce the PCA block right after the feature computa-
tion step. We apply it on the individual feature vector from each

Average Classification Accuracy [%]

No PCA PCA

No MR 69.0 81.8

MR 81.0 87.4

Table 2. Average accuracies across classes for K = 10. The MR
results correspond to η = 20 iterations. Improvement in overall
accuracy using a 2-level decomposition is 5.6% with PCA.

subband. To test its efficacy, we simply choose the same number of
transformed features from each of the subbands. As PCA increases
computational complexity, its use is contingent on a large-enough
improvement in classification accuracy.

4. EXPERIMENTAL RESULTS

We used the 2D HeLa collection of cervical cancer cells with 50
single-cell images of size 512×512, in each class, courtesy of the
MurphyLab [8]. There were 10 classes of subcellular location pat-
terns obtained by marking the proteins Tubulin, Gpp130, Nucleo-
lar, Giantin, Mitochondrial, ER, Lysosomal, Endosomal and Actin
along with DNA. We partitioned our input set into a training set
of 45 images and a testing set of 5 images in each class. We grew
a full wavelet tree of L = 2 levels using the Haar basis. We per-
formed a 10-fold cross validation and it is the average of these
results that is reported here.

The main question we sought to answer was:

Does space-frequency adaptivity offered by the MR transform
help?

That is, do subbands contain information useful for classification?
The significant increase in classification accuracy (around 10%,
see Table 1), demonstrates that subbands are indeed useful for clas-
sification.

Discussion. Having established that subbands indeed contain
information useful for classification, how does the maximum num-
ber of clusters allowed influence the classification accuracy? In
Fig. 4, we note that, irrespective of the value of K, we obtain a
higher classification accuracy with decomposition than without.
Further, the highest accuracy is obtained with K = 5. We are yet
to interpret these results, that is, why K = 5 best describes our
data set.

Another question is: how does η, the number of epochs (our
stopping criterion) influence the accuracy? Again, Fig. 4 shows
that the accuracies reach their maximum value fairly quickly and
then oscillate in a finite and small range.
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Output of Classifier [%]

Tub Gpp Nuc Gia Mit ER L2 Tfr Act DNA Accuracy

No MR 64 64 66 86 66 74 72 40 100 86 71.8

MR 74 84 98 90 68 80 86 48 100 94 82.2

Table 1. The accuracy per class, for K = 5. The MR results correspond to η = 20 iterations. Improvement in overall average accuracy
using a 2-level decomposition is 10.4%.
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K = 3, No Decomp Avg Acc = 70.6%
K = 5, No Decomp Avg Acc = 71.8%
K = 7, No Decomp Avg Acc = 69.0%
K = 10, No Decomp Avg Acc = 69.4%
K = 15, No Decomp Avg Acc = 68.0%

Fig. 4. Variation of the average classification accuracy with the
number of iterations η used for weight training and different K.
The legend reports the average accuracy for each K using the orig-
inal images without decomposition.

As for PCA, we conclude that it is useful in improving the
classification accuracy with or without MR (see Table 4). This
increase may be explained as the advantage offered by expressing
the features in an orthogonal representation, the eigenvectors, that
brings our models closer to the underlying assumptions such as
features’ coordinate independence. As in the previous result, MR
outperforms the nonMR.

We also tested the system with a set of morphological features.
These features visually describe distinct aspects of the image as
discerned by the human eye. The principal categories of morpho-
logical features are object (continuous portion of the fluorescent
image), edge (boundary of the object), convex hull (a closed, con-
vex contour of the object) and skeleton (a detailed grid of the flu-
orescent image) features. The results we obtained using 16 such
features show an improvement of the classification accuracy from
53.6% without MR to 68.9% with MR (2-Level decomposition
with K = 10 and η = 20), further establishing the contribution of
MR.

A final comment: Since the K-means algorithm introduces
some randomness in the modeling, we ran the experiments a num-
ber of times and found that the average classification accuracies
are consistent and variation is small. We are also working on a
more robust weight initialization procedure and a search routine
for the stopping criterion to avoid fixing it apriori.

5. CONCLUSIONS AND FUTURE WORK

We motivated the use of an adaptive MR approach for subcellu-
lar protein classification. We obtained a substantial increase in
the classification accuracy, suggesting that subbands do contain
further information pertinent to classification and not included in
the nondecomposed image alone. These results open up several
venues for exploration. As our present system uses a very small
number of features, the next step is combining different types of
features, which may add to the discriminative strength of the al-
gorithm. We may also explore different levels of decomposition
and conduct a search on a library of bases for the filters used in the
decomposition. We will also do that for the maximum number of
clusters, to get a more adapted characterization on a specific data
set. Finally, as the K-means clustering imposes a spherical topol-
ogy which may not be natural to the data set, we will look into
other nonparametric methods that do not impose such constraints.
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