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ABSTRACT

Following an overview of image analysis applications in 2D and 3D
dynamic biological microscopy, we present work developed in our
laboratory dedicated to two central aspects of cell biology of infec-
tion, cell shape and motility analysis and particle tracking. We de-
scribe a fully automatic segmentation and tracking method designed
to enable quantitative analyses of cellular shape and motion from
4D (3D+t) microscopy data. To get at a better understanding of
pathogens/host cell interactions and to document infectious disease
processes in living systems, it is necessary to characterise the dy-
namic properties of pathogens. We describe a method to detect and
track multiple moving biological spot-like particles showing differ-
ent kind of dynamics in image sequences acquired through multidi-
mensional fluorescence microscopy.

1. INTRODUCTION

The advent of multidimensional microscopy (real-time optical sec-
tioning and confocal, TIRF, FRET, FRAP, FLIM) has enabled bi-
ologists to visualize cells, tissues and organs in their intrinsic 3D
and 3D+t geometry, in contrast to the limited 2D representations
that were available until recently. These new technologies are al-
ready impacting biological research in such different areas as high-
throughput image-base drug screening, cellular therapies, cell and
developmental biology and gene expression studies, as they are put-
ting at hand the imaging of the inner working of living cells in their
natural context. Expectations are high for breakthroughs in areas
such as cell response and motility modification by drugs, control
of targeted sequence incorporation into the chromatin for cell ther-
apy, spatial-temporal organization of the cell and its changes with
time or under infection, assessment of pathogens routing into the
cell, interaction between proteins, sanitary control of pathogen evo-
lution, to name but a few. Deciphering the complex machinery of
cell functions and dysfunction necessitates large-scale multidimen-
sional image-based assays to cover the wide range of highly vari-
able and intricate properties of biological material. However, un-
derstanding the wealth of data generated by multidimensional mi-
croscopy depends critically on decoding the visual information con-
tained therein. Over the last few years, this area of research has
fuelled a full array of challenging topics for the signal and image
processing community, ranging from adaptive image acquisition [1],
segmentation [2], automated analysis of complex protein patterns
[3] to mathematical microscopy [4] and localisation at the nanoscale
[5, 6].

Within the vast interdisciplinary field of biological imaging, this
paper concentrates on two aspects central to cell biology, particle
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tracking and cell shape and motility analysis, which have many ap-
plications in the important field of infectious diseases. While giving
a panorama of state-of-the art work in these topics, we put a particu-
lar emphasis on work developed in our laboratory.

2. PARTICLE TRACKING

Molecular dynamics in living cells is a central topic in cell biol-
ogy, as it opens the possibility to study with sub-micron resolution
molecular diffusion, spatio-temporal regulation of gene expression
and pathogen motility and interaction with host cells. For example,
it is possible, after labelling with specific fluorochromes, to record
the movement of organelles like phagosomes or endosomes in the
cell [7], the movement of different mutants of bacteria or parasites
[8] or the positioning of telomeres in nuclei [9]. In many cases, the
biological fluorescent targets are visualised as moving bright spots
that need to be localized and associated into tracks, from which the
number, position, spatial distribution, movement phases and diffu-
sion coefficients can be estimated and used to quantify the biological
dynamics. When analysing moving biological spots the major diffi-
culties are primarily due to the facts that, at least in 2D microscopy,
the spots frequently go in and out of focus, and that their appearance
can change, making detection very challenging. In addition, the fact
that spots may aggregate and change their individual dynamics over
time makes tracking a very difficult problem.

Several methods have been proposed to tackle the problem in
2D [10, 11, 12, 13, 14, 15]. Some of these methods are based on
intensity thresholding [10], template matching [11]or local maxima
extraction [12] for detecting the spots and on nearest neighbour as-
sociation (NNA) [10] or constrained NNA [12] to perform the track-
ing. In [13], a method using the combination of four techniques,
namely highly sensitive object detection, fuzzy logic-based dynamic
object tracking, computer graphical visualisation, and measurement
in time-space is proposed to track well separated cells. The method
in [14] is based on concepts from operational research and graph
theory, and it proceeds in four steps: particle detection, generation
of candidate matches, i.e., a set of possible displacement vectors be-
tween successive frames; scoring of candidate matches and selection
of the candidate subset with maximum global score and no topo-
logical ambiguity. The method in [15] does not use the traditional
frame-by-frame approach but rather considers the whole sequence
as a spatiotemporal volume where the tracks are defined as minimal
paths in an image-dependent metric.

Tracking in 3D+t has been addressed only more recently, either
in the case of single particles [16] or multiple particles [6, 17, 18].
The method in [16] uses a matched filter as a prefiltering step to a
dynamic programming procedure that extracts the trajectory. The
method in [6] uses a 3D PSF model for spot detection and associates
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spots on the basis of the weighted minimal distance between them.
In the following we describe the methods we have developed to per-
form the detection and the tracking of microscopic spots directly on
four dimensional (3D+t) image data [17, 18]. They are able to de-
tect with high accuracy multiple biological objects moving in three-
dimensional space and incorporates the possibility to follow moving
spots switching between different types of dynamics. Our methods
decouple the detection and the tracking processes and are based on a
two step procedure: first, the objects are detected in the image stacks
thanks to a procedure based on a three-dimensional wavelet trans-
form; then the tracking is performed within a Bayesian framework
where each object is represented by a state vector evolving according
to biologically realistic dynamic models.

2.1. Spot detection

In [17], we proposed a spot detection method based on a multiscale
approach that uses a shift invariant discrete wavelet transform and on
the selective filtering of wavelet coefficients. This scheme allows to
separate and characterize objects of different sizes by selecting only
a vicinity of detail images at scales adapted to the size of the spots.
The extraction step consists in retaining the significant responses of
the locally supported detail signal filter to the desired features, at the
different scales of the wavelet representation. This is accomplished
through a denoising technique using a threshold value which is im-
age and scale dependent and which can be computed automatically
from the data. The main advantage of wavelet-based detection is to
be robust to the local variation of contrast and to efficiently segment
fluorescent spots imbedded in noisy images such as those acquired
in biological microscopy.

2.2. Bayesian multitarget tracking

Bayesian target tracking methods consist in filtering successive mea-
surements coming from a detector and to compute the posterior dis-
tribution from the set of already detected measurements. When track-
ing one target with no clutter, there is no association problem and
optimal Bayesian filters such as Kalman filter [19] and Grid Based
Filter [20] or suboptimal Bayesian filters such as Extended Kalman
Filter [19], and Particle Filter (PF) [20] are well suited to build the
successive probability density functions of the actual target state.
However, all the previous filters are bound to use just one dynamic
model in their scheme which is problematic when the objects’ dy-
namics vary with time as it is the case with biological objects. This
is why in our applications we have used instead the Interacting Mul-
tiple Models (IMM) filter [21]. The IMM has been designed, first
in the context of radar imaging, with the capability to have differ-
ent models in parallel and to select and switch to the model which
is more accurate to represent the movement during a given period.
The IMM has the additional ability to rapidly self-adapt to transi-
tions. This makes the IMM an ideal choice for tracking biological
objects. In [18], we proposed to use three different models of dy-
namics adapted to biological object dynamics: random walk, first or-
der linear extrapolation and second order linear extrapolation. They
model respectively Brownian motion and directed movement with
constant speed or acceleration, which are representative modes of
motion encountered in biology [22]. We also made the additional re-
alistic hypothesis that during movement, the biological objects can
switch abruptly between the three models.

In presence of clutter and ill-performing detection, several al-
gorithms exist to resolve the association problem [23]. The most
efficient one is probably the Probabilistic Data Association Filter

[19, 23]. In the case of several targets in clutter, the problem of asso-
ciation is of major importance. The most popular algorithms to solve
the association problem are the Joint PDAF [23] and the Multi Hy-
pothesis Tracking [24]. Both algorithms however present important
limitations by making the two following assumptions: i) a target can
generate at most one measurement per scan and ii) a measurement
could have originated from at most one target. In theory, a perfect
detector should give exactly one measurement per tracked object and
enable a 2-D optimal assignment algorithm as [25] to find the asso-
ciation which maximizes the joint association event probability of
the Bayesian filter. When tracking a high number of deformable
sources in real world applications, the previous assumptions are of-
ten not met due to spurious detections, causing existing methods to
fail. We therefore proposed in [26] an algorithm which allows to
perform the tracking in cases when a single target generates several
measurements or several targets generate a single measurement. The
novel idea presented in that paper was the introduction of a set that
we called virtual measurement set which supersedes and extends the
set of measurements. This set is chosen to optimally fit the set of pre-
dicted measurements at each time step. This is done in two stages:
1. a set of feasible joint association events is built from virtual mea-
surements that are created by successively splitting and merging real
measurements; 2. the joint probability is maximized over all feasible
joint association events. In contrast to other Bayesian approaches,
our technique allows tracking to succeed in difficult cases where
multiple objects are detected as a single object or, conversely, when
a single object is detected as several sub-objects.

Fig. 1. Tracking of fluorescent objects in 3D+t. (a) original image
stack. (b) result of detection. (c) view of the tracks.

3. CELL TRACKING WITH ACTIVE CONTOURS AND
SURFACES

Another important project of our lab is motivated by the problem of
cell motility. The ability of cells to move and change their shape
is important in many important areas of biology, including cancer,
development, infection and immunity. Our aim is to develop al-
gorithms to segment and track moving cells in dynamic 2D or 3D
microscopy. For this purpose, we have adopted the framework of ac-
tive contours and deformable models that is widely employed in the
computer vision community, e.g. [27, 28, 29, 30]. The segmenta-
tion proceeds by evolving the front according to evolution equations
that minimize an energy functional (usually by gradient descent).
This energy contains both data attachment terms and terms encoding
prior information about the boundaries to be extracted, e.g. smooth-
ness constraints. Tracking, i.e. linking segmented objects between
time points, is simply achieved by initializing front evolutions using
the segmentation result of the previous frame, under the assumption
that inter-frame motions are modest. In the following, we describe
some of our work on adapting these methods to the needs of cellular
imaging in biological research.

3.1. Region based image energies

An important part of a deformable model method is the choice of the
image-dependent energy terms. This choice obviously depends on
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the type of imaging used. In fluorescence microscopy, the intensity
of cells stained with cytoplasmic markers is on average larger than
that of the unstained background, but the signal to noise ratio may be
very low due to limitations on exposure time, especially in dynamic
3D imaging. Gradient based active contour methods such as [27],
where the image energy is the integral of a locally computed edge
map along the contour only, give poor results on such images, where
boundaries are often fuzzy, and are very sensitive to initialization.
After first attempts with gradient vector flow, where intensity gradi-
ents are allowed to diffuse throughout the image [28, 31], we turned
to a region oriented approach, where the image energy is computed
from surface integrals over the entire image domain. Specifically,
we adopted the model of active contours without edges from [29],
where image energy terms are the intensity variances inside and out-
side the contour [32, 33, 34]. This model provides strong robust-
ness to noise and allows segmentation of cells with blurred edges.
We confirmed this quantitatively on simulated images of cells image
with a realistic diffraction limited point spread function causing blur,
and at low signal to noise ratios [33].

Non fluorescent imaging techniques, such as phase contrast or
differential interference contrast microscopy, are popular because
they are inexpensive and allow observations over extended time pe-
riods. In such images, the average intensity level of cells is often
similar to that of the background, but the cells generally appear as
textured objects due to intracellular structures such as vesicles. We
found that the local average intensity deviation is a simple but ef-
ficient filter that highlights the interior of cells and in effect trans-
forming phase contrast images into fluorescence-like images, and
allowing us to use the region energy of [29, 32, 34] to discriminate
cells from the background.

Although region oriented models are far more robust than purely
edge oriented models, using gradient information as an additional
energy term [33] can still improve the segmentation in cases where
cell edges are strong, for instance for fluorescently labeled cell mem-
branes, or when region information is locally absent, for instance for
vesicle-free pseudopodia imaged with non-fluorescent microscopy
[31] as illustrated in Fig. 2.

Fig. 2. Tracking of amoebae with parametric active contours. (a)
amoeba on a glass slide imaged with phase contrast video mi-
croscopy. (b) computed contours.

3.2. Boundary representation, topology, and touching cells

Next to the energy, the other main technical ingredient of a de-
formable model is the mathematical representation of the boundary,
which is generally done either explicitly, using parametric curves or
meshes, e.g. [27, 28], or implicitly using the level set method [30,
29], where the front is defined as the zero level set of a scalar func-
tion defined over the image domain. Both approaches have distinct

advantages and drawbacks for cellular imaging, and we currently
employ both of them in diverse applications. The main differences
concern the handling of topology and computational speed. It is
well known that level set methods are well suited to handle topo-
logical changes of the evolving front. This in turn allows automatic
detection of spatially isolated cells at the onset of processing [32], of
dividing cells [33], and is particularly suited to handle 3D data [33],
in contrast to parametric models. Despite these advantages, we still
employ parametric active contour methods for large 2D image se-
quences [31], essentially because level set methods suffer from com-
paratively large computational cost.

Another important point for cell tracking concerns the handling
of touching cells: if previously isolated cells move together and
touch, most level set methods will merge the associated objects, be-
cause they allow no constraints on object topology [32, 33]. We have
however overcome this limitation by employing multiple level set
functions coupled by a non-overlap constraint [32, 33]. Parametric
contours by construction maintain the topology of already identified
objects. However independently evolving parametric active contours
will also lead to incorrect segmentations (each contour will tend to
swallow all touching cells). To prevent this, we have described a
method that couples the active contours via a single multiple-contour
energy that includes non-overlap constraints [34].

Non-overlap constraints are sufficient to keep track of cell iden-
tity, but cannot guarantee correct segmentations when boundary in-
formation at the cell-cell interface is weak. In the worst cases, one
contour or surface may encompass all objets while the other models
collapse. To avoid this, we introduced an additional energy term that
penalizes changes of cell volume (in 3D images). This is justified by
the biophysical property of cell volume homeostasis [33].

4. CONCLUSION

We have presented a short review of methods that have been de-
veloped in the area of 3D and 3D+t image analysis tools for multidi-
mensional biological microscopy. These methods have been adapted
to the increased dimensionality of the data and are able in a number
of cases to perform the automated processing and analysis of multi-
channel temporal 3D sequences. Many more developments are how-
ever needed to tackle the challenges posed by biological imaging:
huge amounts of data, high variety of imaging protocols, high vari-
ability of the biological objects, huge amounts of cellular players.
Many of the techniques needed in this field of imaging are still chal-
lenging topics of research in applied mathematics and image pro-
cessing and have not been considered in the context of multidimen-
sional microscopy. A major interdisciplinary effort is therefore re-
quired to provide the new tools that are critically needed for the ad-
vancement of molecular medicine and biotechnology-based health
care strategies.
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