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ABSTRACT

This paper describes a system for in vitro cell migration analysis.
Adult neural stem/progenitor cells are studied using time-lapse mi-
croscopy and thereafter stained immunohistochemically to find and
distinguish between undifferentiated glial progenitor cells and cells
having differentiated into type-1 or type-2 astrocytes. The cells are
automatically segmented and tracked throughout the time-lapse se-
quence. The evaluation showed that 88% of the cells were correctly
segmented and tracked by the automatic system. Upon characteriza-
tion of the cell migration by Hidden Markov Modeling, it was found
that the motion of glial progenitor cells was random 2/3 of the time,
while the type-2 astrocytes showed a directed movement 2/3 of the
time. This finding indicates possibilities for cell-type specific iden-
tification and cell sorting of live cells based on specific movement
patterns in individual cell populations, which will have valuable ap-
plications in neurobiological research.

1. INTRODUCTION

Cell migration analysis is of interest in many different biological ap-
plications, e.g. when studying leucocytes [1], fibroblasts [2], or uni-
cellular microorganisms [3]. The overall aim of this project is to aid
in the investigation of the mechanisms behind differentiation of neu-
ral stem/progenitor cells by creating a system for analyzing the mo-
tion of cells in vitro. Multipotent stem/progenitor cells derived from
adult rat hippocampus, AHPs (Adult Hippocampal Progenitors), are
capable of differentiating into neurons, astrocytes or oligodendro-
cytes, in vitro, as well as in vivo, after being transplanted into the
adult brain [4]. They also possess several medically interesting fea-
tures, such as the ability to survive and migrate, as well as become
integrated into an injured brain without causing tumor formation.

The first step in our system is the image acquisition of develop-
ing neural stem/progenitor cells using time-lapse microscopy. There-
after, the individual cells in each image are automatically segmented.
Previous investigations,[5] led us to believe that seeded watershed
segmentation combined with rule-based merging might be a suit-
able technique for identifying and segmenting individual cells. This
choice of method was mainly motivated by the appearance of the
cells at hand and the relatively low sampling rate. For solving the
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problem of cell tracking, we propose a combination of the nearest-
neighbor and correlation matching techniques. Also, the tracking
result should be used for improving the segmentation. The classifi-
cation of the cells is based on preliminary observations [5] showing
that a single cell may switch between different migration modes or
states of migration in a random manner. Hidden Markov Model-
ing (HMM) is known to be a powerful statistical tool for describing
non-stationary stochastic processes. There are reasons to believe that
cell migration can be modelled as a random walk (Brownian motion)
with sudden changes in step length or direction. Therefore, we have
chosen a HMM for the migration analysis.

2. MICROSCOPE SETUP

A Leica DM IRB inverted light microscope with a 20X ordinary
bright field objective and a 100W halogen lamp was used for imag-
ing. Images are captured by a Microimager II CCD video camera
from QImaging with 1.28 megapixels resolution, using a binning of
size 2×2. The specimen is moved in the horizontal plane by a motor-
ized microscope stage (Prior H107) to image the separate wells, and
focus is set by a motorized focus drive, both controlled by a con-
troller unit (Prior Proscan) that supports high-level text commands
via a serial interface. The system does not have absolute position,
however unipolar stepper motors assure that errors are not accumu-
lating, and the repeatability is good enough for the present applica-
tion. Auto-focusing is done by capturing a focus stack of 128 images
with an interval of 0.5µm (∼half the depth of field) and storing the
image with the highest Brenner focus function score. Since no con-
trast enhancement technique is used, a certain level of de-focusing is
needed to increase contrast, and meet the prerequisites for the seg-
mentation. Hence the dual peak appearance of the focus curve.

Fig. 1. An illustration of the image stack and the focus function
fz . The contrast of the image is maximized for a certain level of
defocusing.
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2.1. Horizontal motion correction

Since errors in the stage stepper motors do not accumulate the hori-
zontal correction can be done by post-processing, as long as the error
is small enough. Backlash and mechanical inertia is less evident in
the stage than in the microscope focus control. The drifts in the x and
y direction were random but differed in magnitude. For estimation
of the translation for each pair of frames we compute the correlation
Dt,t+1 in the Fourier domain, see Fig. 2(a).

Dt,t+1 = FFT{I(t)} · conj (FFT{I(t+1}) (1)

For two identical images, shifted xd and yd in the spatial domain,
the phase of the correlation in the frequency domain will contain
the translation in accordance with the Fourier shift theorem. Hence,
the inverse transform of the phase of the correlation will have an
energy distribution in which the center of gravity corresponds to the
direction and magnitude of the translation.

dt,t+1 = IFFT{ei � D} (2)

To sharpen the peak in Fig. 2(b), the central 32 × 32 part of dt,t+1

was cropped, Fourier transformed, padded with zeros to 256 × 256,
and finally inverse Fourier transformed. To obtain a well defined
peak we use d = |d|α with α = 10. The drift of the stage is the
cumulative sum over time of the center of gravity of dt,t+1(x, y).
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Fig. 2. (a) The central part of |Dt,t+1| in the fourier domain (b)
dt,t+1 in the spatial domain. In this example, the horizontal shift is
-0.66 pixels and the vertical shift is 2.64 pixels.

The images used in this paper were 30 different image sequences
acquired at two different occasions. Each image sequence contained
273 8-bit gray scale frames, each of size 634 × 504 pixels. One
pixel corresponds to an area of 0.6 × 0.6 µm2 of the specimen. Im-
ages were acquired every 10 minutes for 45.5 hours. Thereafter the
cells were immunostained for the A2B5 antigen and GFAP, in order
to identify three different cell types: glial progenitor cells, type-1
astrocytes, and type-2 astrocytes.

3. SEGMENTATION

The image segmentation is based on seeded watershed segmentation.
First, seeds representing objects (cells) and background are defined.
The background is defined as a region with low local variance, while
the cells, and their immediate surroundings, show greater variance.
The variance at each pixel, is computed over a square neighborhood
of size 9 × 9 of the gray level image (see Fig 3(b)) and the pixels
below a manually set threshold level of tbg = 150 were considered
as background.

Object seeds were found using the h-maxima transform. The ex-
tended h-maxima transform filters out local maxima using a contrast
criterion. All maxima with heights smaller than a threshold level h
are suppressed. A low h will result in many seeds, often more than
one seed per cell, while a high h will leave some cells without a seed.
Due to a subsequent merging step (described below), we can accept
extensive seeding and use a rather low h value (h=20). The choice
of h turns out not to be a critical operation, since a range of values
yield satisfactory results. All foreground seeds are uniquely labelled
using connected component labelling.

(a) (b)

(c) (d)

Fig. 3. A (200 × 200 pixels) portion of the full field of view
(634 × 504 pixels) showing the steps in the segmentation process.
(a) The original image. (b) The variance map, used for definition of
the background seed. (c) The result of seeded watershed segmen-
tation; some objects that are not true cells are also detected. The
arrows mark two false objects removed by subsequent merging. (d)
The final segmentation result obtained by the described method.

Seeded watershed segmentation can be described by interpret-
ing the intensity image as a landscape, where each isolated catch-
ment basin will give rise to a watershed. In our case, we apply
seeded watershed segmentation to the inverse of the original gray-
scale image, and thus consider the dark edges of the cells as ridges,
and the brighter cells and background as valleys. Each foreground
and background seed will give rise to a watershed. The watershed
segmentation is implemented using sorted pixel lists, and the result-
ing segmentation of Fig. 3(a) is shown in Fig. 3(c).

Extensive seeding results in partial over-segmentation. This over-
segmentation is reduced by removing region boundaries crossing
bright parts of the image, e.g., a boundary dividing a bright cell in
two. We refer to this as merging regions with weak borders [6], and
continue the merging until the average intensity along the border of
all remaining objects is darker than a given threshold tm = 5. This
step will not only reduce over-segmentation, but also merge false
objects, such as debris, with the background.

Despite the extensive seeding, some cells may be missed due to
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weak diffraction of light. Cells may also be lost in the merging step.
These cells are given a ”second chance” of being found by a search
in the variance map. Regions where no cell was found despite of
high variance are further processed using morphological opening on
a binary mask of the missed regions, detecting new cell-like regions.
The final segmentation is shown in Fig. 3(d).

4. CELL TRACKING

In this section the different parts of the tracking system are described.
The tracking is performed backwards, starting at frame 273, since the
information about what kinds of cells the stem/progenitor cells have
become is given by immunostaining subsequent to acquiring the last
frame. One iteration in the algorithm can be described as solving
the assignment problem, examine unassigned tracks, and examine
unassigned objects and update results.

The asymmetric assignment problem, i.e. the problem of match-
ing m objects with n tracks in an optimal way when n �= m, can be
formulated as:

max
n∑

i=0

m∑
j=0

aijxij ∀(i, j) ∈ Γ (3)

where aij is an assignment weight (i.e. the benefit of matching track
i with object j), Γ is the set of pairs (i, j) that can be matched and
xij is 1 if track i is assigned to object j and 0 otherwise.

Track i=0 and object j=0 are called the dummy track and the
dummy object, respectively. The assignment is a one-to-one assign-
ment, except for the dummy track and the dummy object which are
allowed multiple assignments. Based on the results of Blackman &
Popoli, (3) was solved using the modified auction algorithm. The
assignment weights, aij , are calculated according to:

aij =

(
C1

1

δij
+ C2φij + C3

1

ψij

)
· wi (4)

where δij , φij and ψij are explained below, and wi is the weight for
track i. Initially wi = 1.

δij , is a function depending estimating the distance between ob-
ject j and the last known object in track i plus a small constant term
to avoid the denominator becoming zero.

φij is a the peak value of the normalized image correlation be-
tween the track and object images, using only pixels belonging to
the segmented objects.

The last function, ψij , is the difference in area of object j and
the last known object in track i normalized by the area of object in
track i, plus a small constant. The area contribution is limited by a
maximum constant value C4.

Constants C1, C2, C3 and C4 should be chosen so that two,
not so similar, cells in consecutive frames with centroids closer than
about half a typical cell radius (rcell ∼ 7pixels) get a higher as-
signment weight than two cells further apart but very alike. In these
investigations, suitable values for C1, C2, C3 and C4 were found
to be 33, 5, 1 and 3 respectively. These values yield a maximum
value of C2φij + C3/ψij = C2 + C4 = 8, which means that δij

will always give the largest contribution to the assignment weight for
distances between two cells of up to ∼ 4 pixels ( 33

4
> 8).

4.1. Unassigned tracks and objects

There are four reasons as to why a track might not get assigned to a
real object (i.e. are assigned to the dummy object), they are: Mitosis

(cell division) has occurred, cells disappear outside boundaries, cells
disappear into clusters, or the segmentation was incorrect.

A division (or merge, since tracking is made backwards) of cell
α at time t into two cells β1 and β2 at time t + 1 is considered
plausible if the following criteria are fulfilled: The total area of cells
β1 and β2 is not 20% larger or 20% smaller than the area of cell α.
The mean intensity of the interior of cell α is at least twice the mean
intensity of the contour of cell α (since the spherical shape of the cell
enhances the diffraction and hence also the contrast). Furthermore,
cell α must be fairly circular i.e. the relationship between the major
and minor axis of an ellipse with the same normalized second central
moments as cell α should be at least 2/3.

If a cell is lost near the border or in a cluster, the the track weight
wi is gradually decreased and the the track is finally removed. A cell
is considered to have disappeared into a cell cluster if the track is not
near an image border, and if no segmentation error or merging of
cells could be detected.

In the first three cases, the track should be terminated. In the
clustering case a new segmentation is performed, using border trac-
ing with dynamic programming is performed, see [7] for details. If
the result satisfy a number of requirements regarding the object size
and contour intensity, the cell is regarded as valid and assigned to
the track, otherwise the cell is assumed to have joined a cluster.

Furthermore, there are three possible cases of unassigned ob-
jects appearing in an image: cells appearing from outside the image
boundaries, cells previously hidden in a cell cluster, or falsely de-
tected cells. If the center of an unassigned cell is closer than 11
pixels from any of the image borders, it is assumed to have appeared
from outside the image and a new track is started. A new track is
also started for objects emerging from clusters if they are fulfilling
the criteria for valid cells. If an unassigned object does not satisfy
the criteria and is further than 11 pixels away from the border, it is
likely that it is not a cell and a new track is started but given a low
track weight. However, if no cell can be associated with the track in
the next frame, it is deleted from both frames.

5. MIGRATION MODELING

Preliminary experiments suggest that the cells switch between Brow-
nian motion and directed movement [5]. To model the movement,
we applied a discrete Hidden Markov Model with two states. The
model consists of the probability distributions of the states and the
probability of switching between these states at each time instance.
The method developed by Baum et. al. assures convergence to a
local maximum of the maximum likelihood estimate of the model.
The parameters used as input for the model were the speed of the
cells, si(t), and the angular change in movement, θi(t), calculated
for every position throughout the sequence, see Fig. 4, and then dis-
cretized into 10 bins. Before si(t) and θi(t) was calculated the cell
positions were filtered using an averaging filter. The next step was to

s (t)i

��t)i

t-1

t+1

t

Fig. 4. Angle and speed of cell track i at time t. The black dots rep-
resents the average filtered location of the cell at time t-1, t and t+1.
Note that since the time interval between two consecutive frames is
constant, the speed equals the distance.

V  1167



determine the state that each cell occupies for all times throughout
the sequence. This is called the decoding problem, and the Viterbi
algorithm, was used to find the most probable path, given the HMM.

6. RESULTS AND DISCUSSION

The total number of cells that were correctly segmented and tracked
over time divided by the total number of tracked cells over time was
87.7%. The error rates were distributed as follows: over-segmentation
1.7%, under-segmentation 3.5%, partially detected objects 0.4%, mis-
sed cells 5.3%, and tracking errors 1.4%. The difference in man-
ual corrections made by two different users correcting the same se-
quence, i.e. inter-observer variability, was estimated to 2.5%. This
can be used as a measure of the variance of the error rate of the cor-
rected sequences.

Of the 30 sequences acquired, only 17 contained cells that re-
sponded to the immuno staining. A total of 133 glial progenitor
cells were found, and they were present in 157 image frames on av-
erage. The corresponding numbers for the type-1 and type-2 astro-
cytes were 20 cells and 83 image frames, and 28 cells and 117 image
frames, respectively. The cells classified in the fluorescent images
were manually identified in the last image of their corresponding
image sequence.

For all 180 stained cells, si(t) and θi(t) (see Fig. 4) were cal-
culated and used as input for the HMM model. We found, using
several different initial assumptions of the state probability distri-
butions, that two distinct states are present. The two variables are
assumed to be independent. The resulting probability distributions
of the two states are shown i Fig. 5. The probability distributions
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Fig. 5. Distribution of speed (dark columns) and angle difference
(white columns) for state 1 and state 2. The speed interval is 0-9
pixels/frame and the angle interval is 0-180◦.

shown in Fig. 5 suggest that state 1 represents a random motion with
comparatively large changes in direction of motion. State 2 repre-
sents cells that exhibit a directed movement; their speed is higher
while the direction of the motion changes less.

Using the Viterbi algorithm, the state of each cell at all times
throughout the sequence was determined. When all the tracks of the
stained cells had been decoded, the mean value of time spent in each
state for the three different cell types was calculated. The result is

shown in Fig. 6. From a biological viewpoint the most interesting
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Fig. 6. Percentage of time spent in state 1 and 2 for the three different
cell types.

finding is the distinct difference in motion patterns between the glial
progenitors and type-2 astrocytes. Fig. 6 shows that the glial pro-
genitor cells spend 2/3 of the time in state 1, moving more or less
randomly, while type-2 astrocyte cells spend 2/3 of the time in state
2 exhibiting a more directed movement.

No conclusions can be drawn from the difference in result be-
tween the type-1 and type-2 astrocytes, as the number of type-1 as-
trocytes were small and they were present in fewer frames on aver-
age. We conclude that migration of glial progenitors is random al-
most twice as often as for cells that became type-2 astrocytes, which
are more directional in their movement. The biological underpin-
nings of this phenomenon is not known, but one explanation could
be that immature cells are more sensitive to secreted factors in the
microenvironment and thus respond to conflicting chemotactic sig-
nals which cause the random behavior. Future work will hopefully
provide us with more data, especially for the two types of astrocytes,
to confirm these findings.
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