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ABSTRACT

Many experimental paradigms in biology aim at studying the
response to coordinated stimuli. In dynamic imaging ex-
periments, the observed data is often not straightforward to
interpret and not directly measurable in a quantitative fash-
ion. Consequently, the data is typically preprocessed in an ad
hoc fashion and the results subjected to a statistical inference
at the level of a population. We propose a new framework
for analyzing time-lapse images that exploits some a priori
knowledge on the type of temporal response and takes advan-
tage of the spatial correlation of the data. This is achieved
by processing the data in the wavelet domain and expressing
the time course of each wavelet coefficient by a linear model.
We end up with a statistical map in the spatial domain for the
contrast of interest (i.e., the stimulus response). The feasibil-
ity of the method is demonstrated by an example of intrinsic
microscopy imaging of mice’s brains during coordinated sen-
sory stimulation.

1. INTRODUCTION

The study of responses to coordinated stimuli is an important
topic in biomedical research. Time-lapse imaging provides
spatial and temporal information that can be exploited to as-
sess the stimulus response and its statistical significance. The
proposed method, which is based on earlier work in the con-
text of statistical analysis of functional MRI data [1], follows
three main principles:

1. Spatial correlation can be efficiently exploited using the
discrete wavelet transform (DWT), leading to compact
representations in the wavelet domain. At the same
time, the DWT is a decomposition into a basis, pro-
viding non-redundancy and perfect reconstruction. An
orthogonal DWT also leaves noise evenly distributed in
the wavelet domain, hence increasing the SNR of the
wavelet coefficients that contribute to the signal.

2. Temporal information can be extracted using the linear
model (LM) approach [2]: the correspondence with an

expected stimulus response is obtained by a linear esti-
mator.

3. The combination of the DWT and the LM for a statisti-
cal analysis resulting in a “spatial activation map”.

We demonstrate the effectiveness of our method by an ex-
ample of intrinsic microscopy imaging of mice’s brain during
coordinated sensory stimulation. The neuronal activity can be
linked to a change in the refractive index which, in turn, in-
duces variations in the reflected light. Using our approach, we
are able to obtain a spatial map from a single experiment; this
allows us to detect activated regions with a prescribed level of
confidence (strong type-I error control). These maps can then
be used for further biological interpretation.

2. WAVELET-BASED STATISTICAL ANALYSIS

2.1. Spatial representation using the wavelet transform

The DWT [3] decomposes the signal into a weighted sum of
basis functions. These are shifted and dilated versions of a
(bandpass) wavelet, ψ(x), and shifted versions of a (lowpass)
scaling function, ϕ(x). For the ease of notation, we will write
the 2-D spatial wavelet decomposition of a dataset v[n], n ∈
Z

2, as
v[n] =

∑
k

vw[k]ψk(n), (1)

where k runs over all subbands and orientations, and ψk is
the corresponding basis function. In the context of this paper,
where we have a series of images, we introduce the temporal
dimension as an additional parameter v[n; t], t = 1, . . . , Nt.
The practical implementation of the DWT can be done using
a fast iterated filterbank algorithm.

2.2. Temporal modelling using the linear model

We introduce the time-course vector vw[k] =
[vw[k; 1] . . . vw[k; Nt]]T. The LM explains the tempo-
ral behavior of a wavelet coefficient with index k:

vw[k] = Xyw[k] + ew[k], (2)
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where the Nt × L design matrix X contains L regressors,
yw[k] is the parameter vector of length L, and ew[k] is
the residual error. The design matrix should at least con-
tain one column for the expected stimulus response and an-
other for the constant signal. Under the hypothesis of (tem-
porally) independently and identically gaussian-distributed
residuals, the least-squares solution for the parameters is
ȳw[k] = (XTX)−1XTvw[k], and the residual ēw[k] =
vw[k] − Xȳw[k]. The contrast of interest is extracted by a
so-called contrast vector c, which results into the measures

uw[k] = cTȳw[k], (3)

s2
w[k] = ēw[k]Tēw[k]cT(XTX)−1c. (4)

The parametric approach using a LM requires coordinated
stimuli and a estimation of a “typical” response derived on
theoretical grounds or from emperical observation. The LM
also allows to build in a certain degree of flexibility with re-
spect to the accuracy of the stimulus response, as in [4]. For
example, one can include a column with the partial derivative
of the “standard” stimulus response with respect to one of its
parameters (e.g., onset or decay time), orthogonalized against
the “standard” response. As such, variations of the response
will be captured by these additional regressors without de-
creasing the contrast of the standard response nor increasing
the residuals.

Note that both the DWT and the LM are linear operations.
Consequently, their order of execution can be interchanged
and uw[k] would corresponds to the DWT of the contrast
map. However, in the next part, we introduce a powerful non-
linear treatment in the wavelet domain.

2.3. Framework for wavelet-based statistical analysis

2.3.1. Wavelet denoising

The wavelet coefficients uw[k] are denoised in the wavelet
domain based on both their estimated value and their residual
error. For that purpose, we consider the proportion

tw[k] =
uw[k]√
s2

w[k]/J
, with J = Nt − rank(X), (5)

which should follow a Student t-distribution in the absence
of contrast (i.e., no response). The reconstruction after hard
thresholding is

ũ[n] =
∑
k

ũw[k]ψk(n),where

8<
:

ũw[k]=uw[k], when |tw[k]|>τw,

0, otherwise,

where τw is a threshold parameter. Notice that we explicitly
did not introduce the notion of a statistical test here.

2.3.2. Statistical detection

Our aim is to establish the statistical significance of the con-
trast in the spatial domain in order to test the hypotheses

H0 : E[ũ[n]] = 0, H1 : E[ũ[n]] > 0. (6)
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Fig. 1. (a) Typical frame of the dataset. (b) Time courses of
the 3 indicated pixels with respect to their temporal average.

As a result of the theorem in [1], the test procedure relies on
the null hypothesis rejection inequality:

Prob
[

ũ[n]
Λ[n]

≥ τs

]
≤ Υ(τw, τs), (7)

where Υ(τw, τs) is data-independent, and Λ[n] is a special
reconstruction of the residuals:

Λ[n] =
∑
k

sw[k]√
J

|ψk(n)| . (8)

In practice, the threshold values τw and τs are obtained by
fixing Υ(τw, τs) = α/N , where α is the desired global sig-
nificance level and N the number of pixels.

2.4. Summary of the method

1. Apply the spatial DWT to the measured data v[n; t] to
obtain the wavelet coefficients vw[k; t].

2. Apply the LM to the temporal dimension and extract
the “contrast” of interest uw[k] with its residual error
s2

w[k].

3. Apply the wavelet denoising step to obtain ũw[k].

4. Apply the inverse DWT to ũw[k] and the “absolute
value” inverse DWT to sw[k]. We obtain ũ[n] and Λ[n].

5. Apply the detection step ũ[n]/Λ[n] > τs.
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Fig. 2. Different columns of the design matrix X, each them
normalized by their energy.

3. DYNAMIC IMAGING IN MICE’S BRAIN

Optical imaging of brain areas is becoming increasingly im-
portant in recent developments in neurosciences; it has al-
ready revealed interesting spatial and temporal mechanisms
of information coding. In this example, we consider the imag-
ing of the brain of a mouse during coordinated sensory stim-
ulation. The reflectance of red light is measured through an
objective by a CCD camera (resolution 180 × 252 after bin-
ning; 5Hz frame rate over 10 seconds). The stimulus-evoked
intrinsic optical signal of activated brain zones is weak and
noisy. Additionally, the change of the intensity is only ob-
servable with respect to the local temporal average. The aim
is to reliably detect and identify the small functional units that
are activated by (specific) stimuli, to allow further biological
interpretation of the data. In Fig. 1 (a), we show a typical
frame of the acquired dataset. In (b), the time-course of 3
highly activated pixels is plotted (with respect to their tempo-
ral average). The stimulus is applied at t = 1s, after which
the evoked signal shows a decrease in intensity.

3.1. Motivation

A commonly used technique to process these data is to apply
a Gaussian smoothing filter in the spatial domain, then sub-
tract the temporal average image, and finally correlate with a
typical response to the stimulus. However, Gaussian filtering
brings along several problems:

• Smoothing removes potentially interesting spatial in-
formation.

• The statistical interpretation becomes complicated:
while apparent SNR increased, statistical significance
needs to take into account the correlation that has been
introduced.

• Tuning of the width of the Gaussian filter is non-trivial:
different activated zones could be of different size.

• Strong stimuli often induce a global response of the ob-
served brain area. It is important to be able to distin-
guish local activation from background activation.

The multi-resolution decomposition as provided by the
DWT seems to be perfectly adapted to deal with these short-
comings:

• No information is lost when taking the transform.

• The statistical interpretation is mapped into the spatial
domain by using the proposed framework.

• The equivalent smoothing at each scale of the transform
is adaptive and allows us to deal with the different “res-
olutions” of the spatial patterns present in the data.

• Wavelets automatically captures the difference of sig-
nal with respect to its local neighborhood. The global
background signal resides in the lowpass subband only.

It should also be noted that the multi-resolution structure it-
self of the activation pattern can provide important biological
insights.

3.2. Setup

We applied the orthogonal cubic B-spline DWT (6 iterations)
to each frame of the acquisition. For the temporal modelling,
the LM was setup using an empirical stimulus response de-
rived from the observations: the stimulus response is de-
scribed by a decaying exponential

f(t; t0, td) =
{

e−(t−t0)/td − 1, t ≥ t0,
0, otherwise,

(9)

with constants t0, the onset of the response, and td, the decay
constant. Typical values are t0 = 1s and td = 2s. The LM
was also extended with the orthogonalized finite differences
f(t; 2s, 2s) − f(t; 1s, 2s) (to deal with delayed onsets) and
the finite difference f(t; 1s, 4s) − f(t; 1s, 2s) (to deal with
variations on the decay time). The different modelling com-
ponents (columns of the design matrix) are shown in Fig. 2.

3.3. Results

The significance level was fixed at α = 0.1%, which allows
us to have high confidence in the detected activations since the
probability of a type I error (false positive) is controlled at this
level. The corresponding threshold values are τw = 7.64 and
τs = 0.30. In Fig. 3 (a), we show the parameter map uw[k] in
the wavelet domain; in (b), the corresponding t-values tw[k],
obtained by weighting (a) with the residual error. Only 0.5%
of the coefficients uw[k] survive the thresholding operation
|tw[k]| > τw. To remove the background activation, we also
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Fig. 3. (a) Wavelet coefficients uw[k] for the stimulus re-
spons. (b) Weighted wavelet coefficients tw[k]. (c) Signif-
icance ũ[n]/Λ[n] of the stimulus response in the spatial do-
main.

zeroed the coefficients of the lowpass subband. Then, the con-
trast is reconstructed and weighted by Λ[n], shown in (c). Fi-
nally, based on the detection step ũ[n]/Λ[n] > τs, we show
the masked contrast in Fig. 4 (a). The statistical detection in
the spatial domain selects 23% of the pixels as activated. If
we reconstruct the low-pass subband only (also after tresh-
olding), we obtain the background activation (which is sta-
tistically significant for the complete image), see Fig. 4 (b).
The trade-off between the background-foreground activations
is controlled by the number of iterations. These results can be
used to identify a signature of the activated zones for further
biological interpretation.

(a)

(b)

Fig. 4. (a) Stimulus response ũ[n] in the spatial domain
masked with the detection. (b) Stimulus response of the back-
ground activation.

4. CONCLUSION

The proposed method allows us to obtain a statistical signif-
icance map of coordinated stimulus responses from a single
experiment. The approach can be easily extended to assess
multiple sessions of the same stimulus (basically by concate-
nation) or to study the inter-session variability (by a second-
level analysis of the reconstructed maps ũ[n]).
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