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ABSTRACT

The essential task in nearly all applications of sensor networks is
to extract relevant information about the sensed data and deliver it
to a desired destination. The overall goal in the design of sensor
networks is to execute this task with least consumption of network
resources. In this regard, the relevant metrics of interest are 1) the
latency (bandwidth) involved in network data acquisition; and 2) the
energy-distortion (E-D) tradeoft: given some desired distortion level
D, how much energy E does the sensor network consume in ex-
tracting and delivering relevant information up to distortion D at a
(usually) distant destination. It is generally recognized that given
sufficient prior knowledge about the sensed data, there exist distrib-
uted processing and communication schemes that have a very fa-
vorable E-D tradeoff in the sense that D \, 0 as n — oo while E
grows at most sub-linearly with the number of nodes (n) in the net-
work. However, it is not known whether such schemes exist when
little or no prior knowledge about the sensed data is available. In
this paper, we present a distributed matched-source channel commu-
nication scheme that naturally integrates the operations of process-
ing and communications in a sensor network and is universal in the
sense that it provides us with a consistent estimation scheme such
that &/ grows sub-linearly with n even when little prior knowledge
about the sensed data is assumed. This universality, however, comes
at the price of increased latency (bandwidth) and a less favorable E-
D tradeoft and we quantify this price by comparing our scheme to
the case when sufficient prior information about the sensed data is
available.

1. INTRODUCTION

Sensor networking is an emerging technology that promises an un-
precedented ability to monitor and manipulate the physical world via
a spatially distributed network of small and inexpensive wireless sen-
sor nodes that have the ability to self-organize into a well-connected
network. The essential task in nearly all applications of sensor net-
works is to extract relevant information about the sensed data and
deliver it to a desired destination. The overall goal in the design of
sensor networks is to execute this task with least consumption of net-
work resources. Consequently, a major challenge in sensor network-
ing applications is the development of efficient distributed methods
for processing and communication of information from within the
network to a given destination. In this regard, the relevant metrics
of interest are 1) the latency (bandwidth) involved in network data
acquisition; and 2) the energy-distortion (E-D) tradeoff: given some
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desired distortion level D, how much energy E does the sensor net-
work consume in extracting and delivering relevant information up
to distortion D at a (usually) distant destination.

It is generally recognized that given sufficient prior knowledge
about the sensed data (e.g., statistical/topological characterization of
the sensor network data, homogeneity of the sensor network data
etc.), there exist distributed processing and communication schemes
that have a very favorable E-D tradeoff in the sense that D \, 0
as n — oo while E grows at most sub-linearly with the number of
nodes (n) in the network (see, e.g., [1, 2, 3, 4]). However, it is not
known whether such schemes always exist when little or no prior
knowledge about the sensed data is available (see, e.g., Section 2).

In this paper, we propose a distributed matched-source channel
communication scheme, based in part on recent results in wireless
communications [1, 2, 5] and compressive sampling theory [6, 7, 8],
that is universal in the sense that it provides us with a consistent
estimation scheme such that £ grows sub-linearly with n without
requiring any prior knowledge about the sensed data. Moreover, this
scheme naturally integrates the operations of processing and com-
munications, thereby reducing the amount of processing and com-
munications required inside the network and provides us with a sys-
tem that often acts less like networks and more like coherent ensem-
bles of sensors, thereby reducing the overhead of network-centric
functions such as routing etc. The added flexibility and universality
of the proposed scheme, however, comes at the price of increased la-
tency (bandwidth) and a less favorable E-D tradeoff and we quantify
this price by comparing our scheme to the case when sufficient prior
information about the sensed data is available.

1.1. Problem Formulation

In this section, we formally define the problem considered in the
paper. In the following sections, we shall elaborate on the technical
details of the proposed scheme. To begin, consider a wireless sensor
network with n nodes where each node takes a noisy sample of the
form

xj:m;—kwj, j=1...,n D

and w; is assumed to be zero mean, independent and identically dis-
tributed (i.i.d) Gaussian measurement noise (in space and time) with
variance o2,. We can consider this data as a vector z € R™ such
that ¢ = ¥ + w, where x* € R" is the noiseless data vector and
w ~ N (0,051,). We further assume that |z}| < B,j = 1,...,n,
for some known constant B > 0, which is determined by the sensing
range of the sensors.

Given z, the goal of the sensor network is to compute a re-
construction = of the noiseless data vector z* at a distant destina-
tion and the reconstruction to have a small latency, L = number
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of network-to-destination channel uses, and expected squared error,
D=E[L|z-a"
amount of energy FE.

Assumptions: In order to facilitate our analysis, we shall make
the following assumptions:
A1l: Each sensor is equipped with a single isotropic antenna.
A2: Let d;, 5 = 1,...,n, be the distance between the sensor at
location j and the destination. The destination is assumed to be far
away from the sensor network so that d; = - - - = d,, = d and there-
fore, the path losses of all sensors are identical.
A3: The sensors communicate with the destination over a narrow-
band Additive White Gaussian Noise (AWGN) wireless channel of
bandwidth W Hz at some carrier frequency f., where f. > W, and
each channel use is characterized by (real) transmission over a pe-
riod of T' = 1/2W seconds.
A4: x* lies in an m-dimensional subspace of R", where m < n.
That is, let U £ {1;}]_, be an orthonormal basis of R” and de-
note by §; = I z* the coefficients of z* in this new basis. Then,
x* =", 0;1; (perhaps after re-labeling the indices 7). O

While A1-A3 are quite self-explanatory and in line with the real-
world scenarios, A4 requires a few words of explanation. Indeed, in
most real-world scenarios, we do not expect x* to be sparse in any
basis of R™. However, it is well known that data collected at nearby
nodes in a dense sensor network is expected to be highly correlated
[9] and thus, shall admit a nearly sparse representation in a com-
pressing basis. The fact that many real-life signals are compressible
is evidenced by the success of familiar compression standards such
as JPEG, MPEG and MP3. Therefore, it is quite reasonable to as-
sume x™ to be compressible in some basis of R™. However, to moti-
vate the proposed scheme we shall restrict ourselves in this paper to
signals that are completely sparse in some basis (m < n non-zero
coefficients in some transform domain) and shall make the transition
from sparse to compressible signals in a future contribution.

2 . . . ..
] , while at the same time consuming minimal

1.2. Distributed Projections of Sensor Network Data

In this section, we develop the basic communication structure of our
proposed scheme. At the heart of our approach is an efficient (dis-
tributed) method of estimating projections of the noiseless sensor
network data onto any normalized vector in R™ by using only a fixed
amount of energy (independent of n). However, before describing
this procedure in detail, we shall define the notion of a Sparsity Map.

Definition 1 (The Sparsity Map): Let ¢ € R™ and Sp, : R" —
P({1,...,n}), where P(X) means power set of X. We call S,
the sparsity map of ¢ if Sp(q) = {j € {1,...,n} : ¢; # 0} and
|Sp(g)| is a counting measure on Sy, (q). O

Now, let ¢ € R", where Hg0||2 = Landv = 37 | 9]
be the projection of ™ onto . Using the notion of sparsity map,
let us denote |S,(p)| = n,. Since ||<,0||2 = 1, we have |p;|?

~
~

lo||?/ny = 1/ny Vi € Sp(). Then, given any E, > 0 and @ as
in (1), the destination can compute an estimate (0) of v in £ ~ E,

amount of energy, such that E [| — v|*] = o2, + E—% , by making
the sensor network sequentially perform the following steps:
S1: The destination transmits ¢; to the sensor at location j, where
j = 1,...,n. Given the nature of the problem, we can assume the
downlink (from the destination to the sensor network) to be error
free. Thus, each sensor receives ¢; in an error free manner'.

INote that the ¢ ;’s can also be made available to the sensors using other
methods and feedback from the destination to the sensors is not really neces-
sary. See the discussion in Section 3 for more details

S2: The sensor at location j multiplies its measurement x; with

(VEo ;) to obtain y; = v/E, ¢;x;. Moreover, E [|y;]*] <
Eo(32+”12ﬂ) = Ey if » % . 271 _ EOO'%U .

S X it € Sp(a) N Sp(e): E [lys)?] = S if
J € Sp(@) N Splp): and E [Jy;*] = 0if 5 ¢ S,(). Thus,
E [ly;*] = 72 Vi € Sp(e)-

S3: All the sensors coherently transmit their corresponding y; in
an analog fashion over the network-to-destination AWGN channel,
effectively transforming it into an AWGN MAC channel, and the

received signal at the destination is given by?

r = Zijrz = \/Eo (Z@]LEJ) + z (2)
j=1 Jj=1
= VE, (vt @) + = 3)

where z ~ N(0,02) is the channel additive white Gaussian noise
andfﬂw/\/'(&aﬁ,). O

In essence, the combination of S1-S3 corresponds to obtaining at
the destination a noisy projection of the data vector = onto . Thus,
at the end of S3, the destination can estimate v as ¥ = r/+/E, and
the resulting distortion is given by

2
D, = E[[o—v?] = o2 + % )

where the first term in the above expression is due to the measure-
ment noise (unaffected by FE,) and the second term is due to the
communication noise that decays as 1/E,. Moreover, since a to-
tal of n, nodes transmitted during this distributed projection, each
with energy < %, the total energy consumed in obtaining ¥ at the
destination is given by

B < (ET> n, ~ E, 5)

Ny

From (4), it is clear that one way of reducing the distortion of
the projection coefficient ¥ is to increase E,. If, however, there are
some constraints on the maximum allowable F,,, then the destination
can repeat the above procedure over p independent channel uses to
obtain {Ty }}_; and then calculate U as U = % > _ Uk Fora
fixed E,, this procedure would give us the following latency (L) and
E-D,, relations

2

_ 2 [P
Dy, = o, + Py (©)
E ~ (pE.) (7
L=p ®)

2. MAIN RESULTS

In this section, using the scheme of distributed projections as a basic
building block, we shall derive results for latency (L) and E-D trade-
off first under the assumption that the destination has perfect knowl-
edge of the subspace in which z* lies and then under the assumption
that the destination has little or no knowledge of the subspace in
which x* lives.

2Because of A2, we can ignore the effect of path loss on the received
signal as it would just be a constant uniform attenuation (independent of n)
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2.1. Signal Reconstruction: Known Subspace

Let ¥ £ {4;}7"_, be an orthonormal basis of R such that z* =
- 0i v (perhaps after re-labeling the indices ¢), where each co-
efficient 0, is computed as a projection (inner-product) of the form
0; = pFz* = >_i—1 ¥z Then, under the assumption that the
destination has perfect knowledge of the subspace in which =™ lies,
we have the following latency (L) and E-D relations.

Theorem 1. If the destination knows U as well as which elements
1, € U give the sparse representation of x* then (a) There exists an
estimation scheme such that ¥V O'z >0, E, >0,andk (=pm) >
m, where p € N

2

_ m 2 mao,
D = n<aw+kEo> )
E ~ (kE,) (10)
L=k (11)

and; (b) if ® is any other orthonormal basis of R™ such that x* =
> i ¢i and the destination knows ® as well as which elements
¢i € ® give the sparse representation of x* then again the results of

(a) hold. Moreover, (c) If 02, <

2
ZL g z then (9) reduces to

m (mo?
~ — z 12
n (k:Eo) (12)

Sketch of Proof: (c) follows trivially from (a). For (a), the desti-
nation computes m distributed projections of = onto {t;}~, over
m independent channel uses. The destination can also repeat this
procedure p times, as described in Section 1.2, for each of the m ba-
sis elements. Thus, at the end of K = pm projections (and channel

uses), the destination has access to m projection coefficients {6; }i~,

-~ 2
such that E [|01 — 9¢|2] =i+ pgén . Therefore, the destination can

estimate ™ as T = ) ", 6;7p; and the resulting distortion is given
by

>
I

IEF |z o
n

|1l o

2 2
T<oi+ L ):ﬂ(a?y+m‘72) (14)
n pE, n

Moreover, E ~ (k E,) and L = k follow trivially from Section 1.2
and the fact that we are computing a total of k projections.

For (b), let ® £ {¢;}!"_, be any other orthonormal basis of R"
(known to the destination) such that z* = %" | 1:¢; (perhaps after
re-labeling the indices 7), where each coefficient 7)(;) is computed as
an inner product of the form n; = ¢f z* = Z?:I ¢ijx;. Then, if
the destination wants to reconstruct 2 by projecting « onto {¢: }.~ ,
using the above procedure, it is easy to see that the above results
would still hold. O

When there is significant measurement noise, it is obvious from
(9) that the distortion scaling is limited by the measurement noise
term in D i.e., () o2, < D. In that case, a stronger result can be
obtained as stated in the following Corollary.

Corollary 1. If 62, > 0 and o2 ~ o2, then (9) in Theorem 1
reduces to D~ (%) and it is possible to achieve this distortion

scaling by using E ~ m and L ~ m.

Proof: Put (kE,) = m in Theorem 1 and the result follows. O

An important implication of Theorem 1 is that all m-dimensional
orthonormal bases that span the subspace in which x* lies are equiv-
alent in terms of the latency (L) and E-D tradeoff and thus, for the
purposes of reconstruction of z*, using any one of these bases is as
good as using any other basis. Generally speaking, however, even
if the destination knows the basis of R™ in which x* is sparse, it is
highly unlikely that it will know ahead of time which m of the basis
elements give the sparse representation of =™ and this is where the
universality of the following scheme comes into play.

2.2. Signal Reconstruction: Unknown Subspace

Let us now assume that the destination has little or no knowledge of
the subspace in which z* lives. As mentioned in Section 2.1, this
includes the scenario where the destination knows the basis of R"
in which ™ is sparse but does not know which of the m elements
of that basis to use. In that case, the destination employs state-of-
the-art compression techniques based on random projections of the
data to efficiently summarize the information in x, resulting in the
following latency (L) and E-D relations.

Theorem 2. If the subspace of R™ in which x* lies is not known to
the destination then there exists a constant C1 > 0 and an estimation
scheme such that¥ E, > 0, and k € N such that (mlogn) < k <
(nlogn)

e (—m lljg”) (15)
E ~ (kE,) (16)
L =k (17)

Moreover, (b) In the case of little or no measurement noise i.e., 02, =
0, similar results hold with slightly different constant C.

Sketch of Proof: The destination generates k length-n random vec-
tors {¢;}F_; such that the components ¢;;, 7 = 1,...,7n, of ¢;
are i.i.d random variables (independent of w;) which take the values
+1/+/n with equal probability. Thus, E [¢;;] = 0 and E [¢7;] =
1/n. The destination now computes & distributed (random) projec-
tions of x onto {qﬁi}f:l over k independent channel uses. Thus, at
the end of k projections, the destination has access to the k noisy
random projections ({n;}F_y : m = ¢ x* + 7 w + Z;, where
Zio~ N (O7 ag/ Eo)) of noisy data that lies in an m-dimensional
subspace. And since the destination has access to the original ran-
dom vectors {¢; }¥_,, it is easy to see from the theory developed by
Haupt and Nowak in [8] that z* can be easily reconstructed from
{m}le such that the resulting distortion behaves like

D

I
=
| ——
| =
ED
|
8
_*
o
| I

(18)

19)

IA
Q
/N S
3
=~ o
]
3
N———

where C1 > 0 is a constant. Rather than reworking the proof of this
statment, we refer the reader to [8] for further details. Similarly, (b)
follows from Corollary 2 in [8]. Moreover, E ~ (k E,) and L = k
follow trivially from Section 1.2 and the fact that we are computing
a total of k projections. O

As a motivation for Theorem 2, consider the following simple
example. Suppose x* is a spatially non-sparse vector of length n
(Sp(z™) = n) with only one non-zero coefficient of amplitude \/n
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in some transform basis ¥ £ {v;}7_ z|? /n= 1.
This is an example of the case where we know the basis in which x*
is sparse but do not know which elements of the basis to use. One
naive approach to this problem is to require each sensor to digitally
transmit its measurement to the destination, where the reconstruction
is then performed. Alternatively, all the sensors might collabora-
tively process their measurements to reconstruct 2™ in-network and
then transmit the result to the destination. Both approaches, how-
ever, while providing us with consistent estimates, would require at
least E ~nand L = n.

Another approach to this problem could be random transform
point sampling where the destination computes a distributed projec-
tion of the data onto %; and ¢ is selected uniformly at random from
the set {1,...,n}. Ignoring the distortion due to the measurement
noise, the squared reconstruction error is O if the spike in ¥ domain
corresponds to v; and 1 otherwise and the probability of not finding

the spike in k trials is (1 - 7) g1v1ng an average squared error
of (1—%)k.1+(k/n)0 (1- )
proximate this by D = ( 7) X e . Therefore, for any
k < n,wehave D — 1 asn — oo while E and L ~ k, and for
k =n, wehave D = e~ ' while E and L ~ n (grow linearly with
n). However, Theorem 2 guarantees us a consistent estimator even
in this situation (m = 1) by taking k = n® (0 < o < 1), resulting
in D < (hf’—(,") =< (n_"‘), while E' and L ~ n® (grow sub-linearly
with n).

If n is large, we can ap-
—k/n

2.3. Cost of Universality

It is important to realize that the added flexibility and universality of
the scheme proposed in Theorem 2 comes at the price of increased
latency (L) and a less favorable E-D tradeoff. For example, an im-
mediate consequence of Theorem 2 is that using this scheme, the
destination needs to expend at least £ ~ (mlogmn) amount of en-
ergy and would incur a latency of at least L ~ (m logn) for barely
consistent estimator of 2*, whereas if one had knowledge of the sub-
space in which z* lied then, assuming o2 ~ o2 (Corollary 1), one

would only require £ ~ m and get D~ (’7’;)

In particular, if o2,
rem 1 reveal that:

1) For a fixed projection energy budget E, and total energy budget
E, the distortion incurred without knowledge of the signal subspace
is about a factor of n/m times larger than if one does know the sub-
space.

2) For a fixed distortion D, the total energy budget E' and the latency
L in data acquisition without knowledge of the signal subspace is
about a factor of n/m times more than if one does know the sub-
space.

Similarly from Corollay 1, if 02 > 0and o2 ~ o2, then for the
distortion of the universal scheme to be equivalent to the distortion of
the known subspace case (D ~ m/n), the destination must expend
E ~ n energy and incur a latency of L ~ n; again a factor of about
n/m times more than if one does know the subspace.

kE’

3. DISCUSSION AND EXTENSIONS

In this paper, we have described and analyzed a universal matched-
source channel communication scheme for reconstruction of sensor
network data at a distant destination. Our scheme is universal in
the sense that it provides us with a consistent estimation scheme
such that £ grows sub-linearly with n without requiring any prior
knowledge about the sensed data. Moreover, this scheme naturally

integrates the operations of processing and communications, thereby
reducing the amount of processing and communications required in-
side the network and provides us with a system that often acts less
like networks and more like coherent ensembles of sensors, thereby
reducing the overhead of network-centric functions such as routing
etc. The universality of our proposed scheme, however, comes at the
price of increased latency (L) and a less favorable E-D tradeoff by
a factor of about n/m, which is a direct consequence of not hav-
ing sufficient prior knowledge about sensed data, forcing us to probe
the entire n-dimensional space instead of focusing our energy on the
m-dimensional subspace in which x* lives.

At the heart of our approach is an efficient (distributed) method
of estimating projections of the noiseless sensor network data onto
any normalized vector in R™ by using only a fixed amount of energy
(independent of n). Depending upon the structure of the normalized
vector, this approach may require the destination to be able to ad-
dress each sensor individually. Pre-storage of individual elements of
the normalized vector in each sensor node is another option which
might not be always feasible because of node failures, changes in the
structure of sensed data etc. If, however, the sensor network employs
the universal scheme based on random projections then the informa-
tion can be efficiently generated by each sensor by using the seed of
a pseudo-random generator and the addresses of the nodes in order
to draw the elements of the random vectors {¢>i}f:1. Similarly, the
destination can easily reconstruct the vectors {¢;} given the seed
values and the number of nodes in the network.

An important consequence of our proposed scheme is that it re-
quires phase synchronization among n nodes during each projection
— something that might not always be feasible. An interesting exten-
sion of our system involves applying this scheme to disjoint subsets
of x and reconstructing =™ from that. Our other future work includes
extensions to compressible signals and studying the effect of imper-
fect node synchronization on the proposed scheme.
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